Critical attractor and universality in a renormalization scheme for three frequency Hamiltonian systems

被引:8
作者
Chandre, C [1 ]
Jauslin, HR [1 ]
机构
[1] Univ Bourgogne, CNRS, Phys Lab, F-21011 Dijon, France
关键词
D O I
10.1103/PhysRevLett.81.5125
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study an approximate renormalization-group transformation to analyze the breakup of invariant tori for 3 degrees of freedom Hamiltonian systems. The scheme is implemented for the spiral mean torus. We find numerically that the critical surface is the stable manifold of a critical nonperiodic attractor. We compute scaling exponents associated with this fixed set, and find that they can be expected to be universal. [S0031-9007(98)07865-X].
引用
收藏
页码:5125 / 5128
页数:4
相关论文
共 22 条
[1]   A renormalization group for Hamiltonians: numerical results [J].
Abad, JJ ;
Koch, H ;
Wittwer, P .
NONLINEARITY, 1998, 11 (05) :1185-1194
[2]   BREAKDOWN OF UNIVERSALITY IN RENORMALIZATION DYNAMICS FOR CRITICAL INVARIANT TORUS [J].
ARTUSO, R ;
CASATI, G ;
SHEPELYANSKY, DL .
EUROPHYSICS LETTERS, 1991, 15 (04) :381-386
[3]   A version of Thirring's approach to the Kolmogorov-Arnold-Moser theorem for quadratic Hamiltonians with degenerate twist [J].
Chandre, C ;
Jauslin, HR .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (11) :5856-5865
[4]   Universality for the breakup of invariant tori in Hamiltonian flows [J].
Chandre, C ;
Govin, M ;
Jauslin, HR ;
Koch, H .
PHYSICAL REVIEW E, 1998, 57 (06) :6612-6617
[5]   Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems [J].
Chandre, C ;
Govin, M ;
Jauslin, HR .
PHYSICAL REVIEW E, 1998, 57 (02) :1536-1543
[6]  
CHANDRE C, IN PRESS J STAT PHYS
[7]   RENORMALIZATION-GROUPS WITH PERIODIC AND APERIODIC ORBITS [J].
DERRIDA, B ;
ECKMANN, JP ;
ERZAN, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (05) :893-906
[8]   RENORMALIZATION METHOD FOR COMPUTING THE THRESHOLD OF THE LARGE-SCALE STOCHASTIC-INSTABILITY IN 2-DEGREES OF FREEDOM HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF ;
DOVEIL, F .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (02) :257-284
[9]   Kolmogorov-Arnold-Moser-renormalization-group analysis of stability in Hamiltonian flows [J].
Govin, M ;
Chandre, C ;
Jauslin, HR .
PHYSICAL REVIEW LETTERS, 1997, 79 (20) :3881-3884
[10]   METHOD FOR DETERMINING A STOCHASTIC TRANSITION [J].
GREENE, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (06) :1183-1201