Microcavity plasma devices and arrays: a new realm of plasma physics and photonic applications

被引:61
作者
Eden, JG [1 ]
Park, SJ [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Lab Opt Phys & Engn, Urbana, IL 61801 USA
关键词
D O I
10.1088/0741-3335/47/12B/S07
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The confinement of low temperature, non-equilibrium plasmas to cavities having characteristic spatial dimensions < 1 mm is providing new avenues of inquiry for plasma science. Not only is a previously unexplored region of parameter space now accessible, but the interaction of the plasma with its material boundaries raises fascinating questions and opportunities. Other scientific issues that come to the fore include scaling relationships and the collisional processes that become prevalent in a high pressure environment. The general characteristics of microplasmas, as well as several emerging applications, are briefly described here. With regard to the latter, emphasis will be placed on photonics and, specifically, the demonstration of large (500 x 500) arrays of microcavity plasma devices in Si, the observation of photodetection in the visible, near-infrared and ultraviolet by a microplasma, and the measurement of optical gain in the blue (lambda similar to 460 nm) from a linear array of microplasmas in a ceramic structure.
引用
收藏
页码:B83 / B92
页数:10
相关论文
共 13 条
[1]   Microplasma devices fabricated in silicon, ceramic, and metal/polymer structures: arrays, emitters and photodetectors [J].
Eden, JG ;
Park, SJ ;
Ostrom, NP ;
McCain, ST ;
Wagner, CJ ;
Vojak, BA ;
Chen, J ;
Liu, C ;
von Allmen, P ;
Zenhausern, F ;
Sadler, DJ ;
Jensen, C ;
Wilcox, DL ;
Ewing, JJ .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (23) :2869-2877
[2]   Modeling of microdischarge devices: Pyramidal structures [J].
Kushner, MJ .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (03) :846-859
[3]   Modelling of microdischarge devices: plasma and gas dynamics [J].
Kushner, MJ .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (11) :1633-1643
[4]   Excimer emission from microhollow cathode argon discharges [J].
Moselhy, M ;
Petzenhauser, I ;
Frank, K ;
Schoenbach, KH .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (23) :2922-2927
[5]   Microcavity plasma photodetectors: Photosensitivity, dynamic range, and the plasma-semiconductor interface [J].
Ostrom, NP ;
Eden, JG .
APPLIED PHYSICS LETTERS, 2005, 87 (14) :1-3
[6]   40,000 pixel arrays of ac-excited silicon microcavity plasma devices [J].
Park, SJ ;
Chen, KF ;
Ostrom, NP ;
Eden, JG .
APPLIED PHYSICS LETTERS, 2005, 86 (11) :1-3
[7]   Microdischarge devices with 10 or 30 μm square silicon cathode cavities:: pd scaling and production of the XeO excimer [J].
Park, SJ ;
Eden, JG ;
Chen, J ;
Liu, C .
APPLIED PHYSICS LETTERS, 2004, 85 (21) :4869-4871
[8]   Photodetection in the visible, ultraviolet, and near-infrared with silicon microdischarge devices [J].
Park, SJ ;
Eden, JG ;
Ewing, JJ .
APPLIED PHYSICS LETTERS, 2002, 81 (24) :4529-4531
[9]  
Park SJ, 2002, IEEE J SEL TOP QUANT, V8, P387
[10]   Arrays of silicon microdischarge devices with multicomponent dielectrics [J].
Park, SJ ;
Eden, JG ;
Chen, J ;
Liu, C ;
Ewing, JJ .
OPTICS LETTERS, 2001, 26 (22) :1773-1775