Single chamber PVD/PECVD process for in situ control of the catalyst activity on carbon nanotubes growth

被引:30
作者
Minea, TM [1 ]
Point, S
Gohier, A
Granier, A
Godon, C
Alvarez, F
机构
[1] Univ Nantes, CNRS, Inst Mat Jean Rouxel, LPCM,UMR 6502, F-44322 Nantes, France
[2] Univ Nantes, CNRS, Inst Mat Jean Rouxel, LPMN,UMR 6502, F-44322 Nantes, France
[3] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil
关键词
carbon nanotube catalysis; ECR; PECVD; PVD; XPS;
D O I
10.1016/j.surfcoat.2005.01.053
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, we studied the effect of oxygen on the catalyst activity and related influence on the nanotubes (CNTs) growth by low-pressure/high-density plasma. CNTs were prepared using a novel single vacuum chamber reactor combining (i) plasma assisted physical vapour deposition (PVD) for catalyst deposition under O-2, NH3 or Ar atmosphere with (ii) electron cyclotron resonance (ECR) C2H2/NH3 plasma enhanced chemical vapour deposition (PECVD) process for carbon nanotubes growth. The substrates are in situ prepared by controlled PVD allowing the deposition of sub-nanometric catalyst (Fe, Ni, Pd) films followed by ECR-PECVD CNTs growth. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analysis of CNTs show that the volume oxidation of the nanometric catalyst particles partially inhibits the CNTs growth while the catalyst surface oxidation can be reduced by the atomic nitrogen during the PECVD process. The specially designed PVD/PECVD process preserves the catalyst from moisture contamination, reducing walls nanotube defects. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1101 / 1105
页数:5
相关论文
共 14 条
[1]   Large-area synthesis of carbon nanofibres at room temperature [J].
Boskovic, BO ;
Stolojan, V ;
Khan, RUA ;
Haq, S ;
Silva, SRP .
NATURE MATERIALS, 2002, 1 (03) :165-168
[2]   Percolative growth of palladium ultrathin films deposited by plasma sputtering [J].
Brault, P ;
Thomann, AL ;
Andreazza-Vignolle, C .
SURFACE SCIENCE, 1998, 406 (1-3) :L597-L602
[4]   Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition [J].
Kato, T ;
Jeong, GH ;
Hirata, T ;
Hatakeyama, R ;
Tohji, K ;
Motomiya, K .
CHEMICAL PHYSICS LETTERS, 2003, 381 (3-4) :422-426
[5]   Growth of high-quality single-wall carbon nanotubes without amorphous carbon formation [J].
Lacerda, RG ;
Teh, AS ;
Yang, MH ;
Teo, KBK ;
Rupesinghe, NL ;
Dalal, SH ;
Koziol, KKK ;
Roy, D ;
Amaratunga, GAJ ;
Milne, WI ;
Chhowalla, M ;
Hasko, DG ;
Wyczisk, F ;
Legagneux, P .
APPLIED PHYSICS LETTERS, 2004, 84 (02) :269-271
[6]   Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method [J].
Li, YM ;
Mann, D ;
Rolandi, M ;
Kim, W ;
Ural, A ;
Hung, S ;
Javey, A ;
Cao, J ;
Wang, DW ;
Yenilmez, E ;
Wang, Q ;
Gibbons, JF ;
Nishi, Y ;
Dai, HJ .
NANO LETTERS, 2004, 4 (02) :317-321
[7]   Carbon nanotube growth by PECVD: a review [J].
Meyyappan, M ;
Delzeit, L ;
Cassell, A ;
Hash, D .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2003, 12 (02) :205-216
[8]   Room temperature synthesis of carbon nanofibers containing nitrogen by plasma-enhanced chemical vapor deposition [J].
Minea, TM ;
Point, S ;
Granier, A ;
Touzeau, M .
APPLIED PHYSICS LETTERS, 2004, 85 (07) :1244-1246
[9]  
MINEA TM, 2004, P 17 ESCAMPIG CONST, P271
[10]  
POINT S, 2004, IN PRESS DIAMOND REL