Advances in AFM for the electrical characterization of semiconductors

被引:156
作者
Oliver, Rachel A. [1 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/0034-4885/71/7/076501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Atomic force microscopy (AFM) is a key tool for nanotechnology research and finds its principal application in the determination of surface topography. However, the use of the AFM tip as a probe of electrical properties allows enormous insights into material functionality at the nanoscale. Hence, a burgeoning suite of techniques has been developed to allow the determination of properties such as resistivity, surface potential and capacitance simultaneously with topographic information. This has required the development of new instrumentation, of novel probes and of advanced sample preparation techniques. In order to understand and quantify the results of AFM-based electrical measurements, it has proved important to consider the interplay of topographic and electrical information, and the role of surface states in determining a material's electrical response at the nanoscale. Despite these challenges, AFM-based techniques provide unique insights into the electrical characteristics of ever-shrinking semiconductor devices and also allow us to probe the electrical properties of defects and self-assembled nanostructures.
引用
收藏
页数:37
相关论文
共 214 条
[1]   MICROROUGHNESS MEASUREMENTS ON POLISHED SILICON-WAFERS [J].
ABE, T ;
STEIGMEIER, EF ;
HAGLEITNER, W ;
PIDDUCK, AJ .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1992, 31 (03) :721-728
[2]   Charge trapping and degradation of HfO2/SiO2 MOS gate stacks observed with enhanced CAFM [J].
Aguilera, L ;
Porti, M ;
Nafría, M ;
Aymerich, X .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (03) :157-159
[3]   Fabrication and characterization of full diamond tips for scanning spreading-resistance microscopy [J].
Alvarez, D ;
Fouchier, M ;
Kretz, J ;
Hartwich, J ;
Schoemann, S ;
Vandervorst, W .
MICROELECTRONIC ENGINEERING, 2004, 73-4 :910-915
[4]   Scanning spreading resistance microscopy of fully depleted silicon-on-insulator devices [J].
Alvarez, D ;
Hartwich, J ;
Kretz, J ;
Fouchier, M ;
Vandervorst, W .
MICROELECTRONIC ENGINEERING, 2003, 67-8 :945-950
[5]   Sub-5-nm-spatial resolution in scanning spreading resistance microscopy using full-diamond tips [J].
Alvarez, D ;
Hartwich, J ;
Fouchier, M ;
Eyben, P ;
Vandervorst, W .
APPLIED PHYSICS LETTERS, 2003, 82 (11) :1724-1726
[6]   Conducting atomic force microscopy studies on local electrical properties of ultrathin SiO2 films [J].
Ando, A ;
Hasunuma, R ;
Maeda, T ;
Sakamoto, K ;
Miki, K ;
Nishioka, Y ;
Sakamoto, T .
APPLIED SURFACE SCIENCE, 2000, 162 (162) :401-405
[7]   Carbon nanotube-modified cantilevers for improved spatial resolution in electrostatic force microscopy [J].
Arnason, SB ;
Rinzler, AG ;
Hudspeth, Q ;
Hebard, AF .
APPLIED PHYSICS LETTERS, 1999, 75 (18) :2842-2844
[8]   Current routes in polycrystalline CuInSe2 and Cu(In,Ga)Se2 films [J].
Azulay, Doron ;
Millo, Oded ;
Balberg, Isaac ;
Schock, Hans-Werner ;
Visoly-Fisher, Iris ;
Cahen, David .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (01) :85-90
[9]   Scanning differential. spreading resistance microscopy on actively driven buried heterostructure multiquantum-well lasers [J].
Ban, D ;
Sargent, EH ;
Dixon-Warren, SJ .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (07) :865-870
[10]   Scanning voltage microscopy on buried heterostructure multiquantum-well lasers: Identification of a diode current leakage path [J].
Ban, D ;
Sargent, EH ;
Dixon-Warren, SJ ;
Letal, G ;
Hinzer, K ;
White, JK ;
Knight, DG .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (02) :118-122