Fabrication of quantum point contacts by imprint lithography and transport studies

被引:29
作者
Martini, I
Kuhn, S
Kamp, M
Worschech, L
Forchel, A
Eisert, D
Koeth, J
Sijbesma, R
机构
[1] Univ Wurzburg, D-97074 Wurzburg, Germany
[2] Nanoplus Nanosyst & Technol GmbH, D-97074 Wurzburg, Germany
[3] Eindhoven Univ Technol, Lab Macromol & Organ Chem, NL-5600 MB Eindhoven, Netherlands
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2000年 / 18卷 / 06期
关键词
D O I
10.1116/1.1319705
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article demonstrates the integration of imprint lithography into nanoelectronic device fabrication. We present a quantum point contact (QPC) with split gates patterned by imprint lithography. The semiconductor substrate is a modulation-doped GaAs/AlGaAs heterostructure with the two-dimensional electron gas located about 90 nm below the surface. A Si mold with a split-gate pattern is embossed into a poly(methylmethacrylate) film located on top of the semiconductor. The Schottky gates are fabricated by metal evaporation and liftoff. The gate tip separation ranges from 120 to 600 nm. Transport studies performed at T=2 K show conductance quantization with varying gate voltages. Measurements performed on a reference QPC with gates defined by electron beam lithography show similar results. This indicates that the imprint does not affect the electronic performance of the semiconductor. (C) 2000 American Vacuum Society. [S0734-211X(00)05306-3].
引用
收藏
页码:3561 / 3563
页数:3
相关论文
共 10 条
  • [1] Sub-10 nm imprint lithography and applications
    Chou, SY
    Krauss, PR
    Zhang, W
    Guo, LJ
    Zhuang, L
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06): : 2897 - 2904
  • [2] IMPRINT OF SUB-25 NM VIAS AND TRENCHES IN POLYMERS
    CHOU, SY
    KRAUSS, PR
    RENSTROM, PJ
    [J]. APPLIED PHYSICS LETTERS, 1995, 67 (21) : 3114 - 3116
  • [3] Metal wire definition by high resolution imprint and lift-off
    Eisert, D
    Braun, W
    Kuhn, S
    Koeth, J
    Forchel, A
    [J]. MICROELECTRONIC ENGINEERING, 1999, 46 (1-4) : 179 - 181
  • [4] Hot embossing in polymers as a direct way to pattern resist
    Jaszewski, RW
    Schift, H
    Gobrecht, J
    Smith, P
    [J]. MICROELECTRONIC ENGINEERING, 1998, 42 : 575 - 578
  • [5] Nanoimprint lithography for a large area pattern replication
    Lebib, A
    Chen, Y
    Bourneix, J
    Carcenac, F
    Cambril, E
    Couraud, L
    Launois, H
    [J]. MICROELECTRONIC ENGINEERING, 1999, 46 (1-4) : 319 - 322
  • [6] Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers
    Rogers, JA
    Meier, M
    Dodabalapur, A
    [J]. APPLIED PHYSICS LETTERS, 1998, 73 (13) : 1766 - 1768
  • [7] Problems of the nanoimprinting technique for nanometer scale pattern definition
    Scheer, HC
    Schulz, H
    Hoffmann, T
    Torres, CMS
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (06): : 3917 - 3921
  • [8] Multilayer resist methods for nanoimprint lithography on nonflat surfaces
    Sun, XY
    Zhuang, L
    Zhang, W
    Chou, SY
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (06): : 3922 - 3925
  • [9] QUANTIZED CONDUCTANCE OF POINT CONTACTS IN A TWO-DIMENSIONAL ELECTRON-GAS
    VANWEES, BJ
    VANHOUTEN, H
    BEENAKKER, CWJ
    WILLIAMSON, JG
    KOUWENHOVEN, LP
    VANDERMAREL, D
    FOXON, CT
    [J]. PHYSICAL REVIEW LETTERS, 1988, 60 (09) : 848 - 850
  • [10] WHARAM DA, 1988, J PHYS C SOLID STATE, V21, P209