Finite element method for epitaxial growth with thermodynamic boundary conditions

被引:7
作者
Bänsch, E
Hausser, F
Voigt, A
机构
[1] WIAS, D-10117 Berlin, Germany
[2] Crystal Growth Grp, Res Ctr Caesar, D-53175 Bonn, Germany
关键词
epitaxial growth; island dynamics; free or moving boundary problem; adatom diffusion; surface diffusion; mean curvature. ow; Gibbs-Thomson; finite elements; adaptivity; front tracking;
D O I
10.1137/030601028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop an adaptive finite element method for island dynamics in epitaxial growth. We study a step-flow model, which consists of an adatom (adsorbed atom) diffusion equation on terraces of different height; thermodynamic boundary conditions on terrace boundaries including anisotropic line tension; and the normal velocity law for the motion of such boundaries determined by a two-sided flux, together with the one-dimensional anisotropic "surface" diffusion (edge diffusion) of edge adatoms along the step edges. The problem is solved using independent meshes: a two-dimensional mesh for the adatom diffusion and one-dimensional meshes for the boundary evolution. A penalty method is used to incorporate the boundary conditions. The evolution of the terrace boundaries includes both the weighted/anisotropic mean curvature flow and the weighted/anisotropic edge diffusion. Its governing equation is solved by a semi-implicit front-tracking method using parametric finite elements.
引用
收藏
页码:2029 / 2046
页数:18
相关论文
共 27 条
[1]   A finite element method for surface diffusion:: the parametric case [J].
Bänsch, E ;
Morin, P ;
Nochetto, RH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (01) :321-343
[2]   Finite element method for epitaxial growth with attachment-detachment kinetics [J].
Bänsch, E ;
Hausser, F ;
Lakkis, O ;
Li, B ;
Voigt, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (02) :409-434
[3]   THE GROWTH OF CRYSTALS AND THE EQUILIBRIUM STRUCTURE OF THEIR SURFACES [J].
BURTON, WK ;
CABRERA, N ;
FRANK, FC .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 243 (866) :299-358
[4]   Analysis of island dynamics in epitaxial growth of thin films [J].
Caflisch, RE ;
Li, B .
MULTISCALE MODELING & SIMULATION, 2003, 1 (01) :150-171
[5]   Island dynamics and the level set method for epitaxial growth [J].
Caflisch, RE ;
Gyure, MF ;
Merriman, B ;
Osher, SJ ;
Ratsch, C ;
Vvedensky, DD ;
Zinck, JJ .
APPLIED MATHEMATICS LETTERS, 1999, 12 (04) :13-22
[6]   Kinetic model for a step edge in epitaxial growth [J].
Caflisch, RE ;
Weinan, E ;
Gyure, MF ;
Merriman, B ;
Ratsch, C .
PHYSICAL REVIEW E, 1999, 59 (06) :6879-6887
[7]   A level set method for thin film epitaxial growth [J].
Chen, S ;
Merriman, B ;
Kang, M ;
Caflisch, RE ;
Ratsch, C ;
Cheng, LT ;
Gyure, M ;
Fedkiw, RP ;
Anderson, C ;
Osher, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 167 (02) :475-500
[8]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[9]  
Clarenz U, 2005, INT SER NUMER MATH, V149, P227
[10]  
DZIUK G, 1991, NUMER MATH, V58, P603