Application of renormalization to the dynamics of a particle in an infinite square-well potential driven by an external field

被引:5
作者
Chandre, C [1 ]
机构
[1] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 04期
关键词
D O I
10.1103/PhysRevE.63.046201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze by a renormalization method the dynamics of a particle in an infinite square-well potential driven by an external monochromatic held. This method setup for Hamiltonian systems with two degrees of freedom allows us to analyze precisely the stability of the trajectories of the particle as a function of the amplitude epsilon of the external field. We compute numerical values of epsilon for which the motion of the particle with frequency omega is broken and a transition to a chaotic behavior occurs. We obtain the critical function epsilon (c)(omega) associated with this system as a function of the parameters such as the frequency of the field and the width of the potential.
引用
收藏
页码:462011 / 462016
页数:6
相关论文
共 22 条
[1]   A renormalization group for Hamiltonians: numerical results [J].
Abad, JJ ;
Koch, H ;
Wittwer, P .
NONLINEARITY, 1998, 11 (05) :1185-1194
[2]  
[Anonymous], PROGR PHYS
[3]   Universality for the breakup of invariant tori in Hamiltonian flows [J].
Chandre, C ;
Govin, M ;
Jauslin, HR ;
Koch, H .
PHYSICAL REVIEW E, 1998, 57 (06) :6612-6617
[4]   Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems [J].
Chandre, C ;
Govin, M ;
Jauslin, HR .
PHYSICAL REVIEW E, 1998, 57 (02) :1536-1543
[5]   An approximate KAM-renormalization-group scheme for Hamiltonian systems [J].
Chandre, C ;
Jauslin, HR ;
Benfatto, G .
JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (1-2) :241-251
[6]   Strange attractor for the renormalization flow for invariant tori of Hamiltonian systems with two generic frequencies [J].
Chandre, C ;
Jauslin, HR .
PHYSICAL REVIEW E, 2000, 61 (02) :1320-1328
[7]  
CHANDRE C, 1999, MATH RESULTS STAT ME
[8]  
CHANDRE C, UNPUB
[9]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[10]   RENORMALIZATION METHOD FOR COMPUTING THE THRESHOLD OF THE LARGE-SCALE STOCHASTIC-INSTABILITY IN 2-DEGREES OF FREEDOM HAMILTONIAN-SYSTEMS [J].
ESCANDE, DF ;
DOVEIL, F .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (02) :257-284