Strange attractor for the renormalization flow for invariant tori of Hamiltonian systems with two generic frequencies

被引:7
作者
Chandre, C [1 ]
Jauslin, HR [1 ]
机构
[1] Univ Bourgogne, CNRS, Phys Lab, F-21078 Dijon, France
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 02期
关键词
D O I
10.1103/PhysRevE.61.1320
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the stability of invariant tori for Hamiltonian systems with two degrees of freedom by constructing a transformation that combines Kolmogorov-Arnord-Moser theory and renormalization-group techniques. This transformation is based on the continued fraction expansion of the frequency of the torus. We apply this transformation numerically for arbitrary frequencies that contain bounded entries in the continued fraction expansion. We give a global picture of renormalization flow for the stability of invariant tori, and we show that the properties of critical (and near critical) tori can be obtained by analyzing renormalization dynamics around a single hyperbolic strange attractor. We compute the fractal diagram, i.e., the critical coupling as a function of the frequencies, associated with a given one-parameter family.
引用
收藏
页码:1320 / 1328
页数:9
相关论文
共 39 条
[1]   A renormalization group for Hamiltonians: numerical results [J].
Abad, JJ ;
Koch, H ;
Wittwer, P .
NONLINEARITY, 1998, 11 (05) :1185-1194
[2]  
[Anonymous], RENORMALIZATION AREA
[3]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[4]  
Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236
[5]  
Benettin G., 1980, MECCANICA, V15, P21, DOI DOI 10.1007/BF02128237
[6]  
Cassels J. W. S., 1957, An Introduction to Diophantine Approximation
[7]   A version of Thirring's approach to the Kolmogorov-Arnold-Moser theorem for quadratic Hamiltonians with degenerate twist [J].
Chandre, C ;
Jauslin, HR .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (11) :5856-5865
[8]   Universality for the breakup of invariant tori in Hamiltonian flows [J].
Chandre, C ;
Govin, M ;
Jauslin, HR ;
Koch, H .
PHYSICAL REVIEW E, 1998, 57 (06) :6612-6617
[9]   Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems [J].
Chandre, C ;
Govin, M ;
Jauslin, HR .
PHYSICAL REVIEW E, 1998, 57 (02) :1536-1543
[10]   An approximate KAM-renormalization-group scheme for Hamiltonian systems [J].
Chandre, C ;
Jauslin, HR ;
Benfatto, G .
JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (1-2) :241-251