Critical exponent of the fractional Langevin equation

被引:105
作者
Burov, S. [1 ]
Barkai, E. [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
关键词
D O I
10.1103/PhysRevLett.100.070601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the dynamical phase diagram of the fractional Langevin equation and show that critical exponents mark dynamical transitions in the behavior of the system. For a free and harmonically bound particle the critical exponent alpha(c)=0.402 +/- 0.002 marks a transition to a nonmonotonic underdamped phase. The critical exponent alpha(R)=0.441... marks a transition to a resonance phase, when an external oscillating field drives the system. Physically, we explain these behaviors using a cage effect, where the medium induces an elastic type of friction. Phase diagrams describing the underdamped, the overdamped and critical frequencies of the fractional oscillator, recently used to model single protein experiments, show behaviors vastly different from normal.
引用
收藏
页数:4
相关论文
共 25 条
[11]  
HANGGI P, 1990, REV MOD PHYS, V62, P251, DOI 10.1103/RevModPhys.62.251
[12]   Use and abuse of a fractional Fokker-Planck dynamics for time-dependent driving [J].
Heinsalu, E. ;
Patriarca, M. ;
Goychuk, I. ;
Haenggi, P. .
PHYSICAL REVIEW LETTERS, 2007, 99 (12)
[13]   Quasielastic neutron scattering and relaxation processes in proteins: analytical and simulation-based models [J].
Kneller, GR .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2005, 7 (13) :2641-2655
[14]   Generalized langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule [J].
Kou, SC ;
Xie, XS .
PHYSICAL REVIEW LETTERS, 2004, 93 (18) :180603-1
[15]   Fractional kinetics in Kac-Zwanzig heat bath models [J].
Kupferman, R .
JOURNAL OF STATISTICAL PHYSICS, 2004, 114 (1-2) :291-326
[16]   Fractional Langevin equation [J].
Lutz, E .
PHYSICAL REVIEW E, 2001, 64 (05) :4
[17]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+
[18]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[19]   Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach [J].
Metzler, R ;
Barkai, E ;
Klafter, J .
PHYSICAL REVIEW LETTERS, 1999, 82 (18) :3563-3567
[20]   Observation of a power-law memory kernel for fluctuations within a single protein molecule [J].
Min, W ;
Luo, GB ;
Cherayil, BJ ;
Kou, SC ;
Xie, XS .
PHYSICAL REVIEW LETTERS, 2005, 94 (19)