The impact of bacterial genomics on natural product research

被引:188
作者
Bode, HB [1 ]
Müller, R [1 ]
机构
[1] Univ Saarland, Inst Pharmazeut Biotechnol, D-66041 Saarbrucken, Germany
关键词
combinatorial biosynthesis; genomics; heterologous expession; natural products;
D O I
10.1002/anie.200501080
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
"There's life in the old dog yet!" This adage also holds true for natural product research. After the era of natural products was declared to be over, because of the introduction of combinatorial synthesis techniques, natural product research has taken a surprising turn back towards a major field of pharmaceutical research. Current challenges, such as emerging multidrug-resistant bacteria, might be overcome by developments which combine genomic knowledge with applied biology and chemistry to identify, produce, and alter the structure of new lead compounds. Significant biological activity is reported much less frequently for synthetic compounds, a fact reflected in the large proportion of natural products and their derivatives in clinical use. This Review describes the impact of microbial genomics on natural products research, in particularly the search for new lead structures and their optimization. The limitations of this research are also discussed, thus allowing a look into future developments. © 2005 Wiley-VCH Verlag GmbH & Co. KGaA.
引用
收藏
页码:6828 / 6846
页数:19
相关论文
共 226 条
[1]   Modern methods to produce natural-product libraries [J].
Abel, U ;
Koch, C ;
Speitling, M ;
Hansske, FG .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2002, 6 (04) :453-458
[2]   A switch for the transfer of substrate between nonribosomal peptide and polyketide modules of the rifamycin synthetase assembly line [J].
Admiraal, SJ ;
Khosla, C ;
Walsh, CT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (45) :13664-13665
[3]   The loading and initial elongation modules of rifamycin synthetase collaborate to produce mixed aryl ketide products-1 [J].
Admiraal, SJ ;
Khosla, C ;
Walsh, CT .
BIOCHEMISTRY, 2002, 41 (16) :5313-5324
[4]  
ARAI T, 1979, TETRAHEDRON LETT, P2355
[5]   A new cytotoxic epothilone from modified polyketide synthases heterologously expressed in Myxococcus xanthus [J].
Arslanian, RL ;
Tang, L ;
Blough, S ;
Ma, W ;
Qiu, RG ;
Katz, L ;
Carney, JR .
JOURNAL OF NATURAL PRODUCTS, 2002, 65 (07) :1061-1064
[6]   The chalcone synthase superfamily of type III polyketide synthases [J].
Austin, MB ;
Noel, JP .
NATURAL PRODUCT REPORTS, 2003, 20 (01) :79-110
[7]   Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145 [J].
Barona-Gómez, F ;
Wong, U ;
Giannakopulos, AE ;
Derrick, PJ ;
Challis, GL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (50) :16282-16283
[8]   IDENTIFICATION OF STREPTOMYCES-VIOLACEORUBER TU22 GENES INVOLVED IN THE BIOSYNTHESIS OF GRANATICIN [J].
BECHTHOLD, A ;
SOHNG, JK ;
SMITH, TM ;
CHU, X ;
FLOSS, HG .
MOLECULAR & GENERAL GENETICS, 1995, 248 (05) :610-620
[9]   Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) [J].
Bentley, SD ;
Chater, KF ;
Cerdeño-Tárraga, AM ;
Challis, GL ;
Thomson, NR ;
James, KD ;
Harris, DE ;
Quail, MA ;
Kieser, H ;
Harper, D ;
Bateman, A ;
Brown, S ;
Chandra, G ;
Chen, CW ;
Collins, M ;
Cronin, A ;
Fraser, A ;
Goble, A ;
Hidalgo, J ;
Hornsby, T ;
Howarth, S ;
Huang, CH ;
Kieser, T ;
Larke, L ;
Murphy, L ;
Oliver, K ;
O'Neil, S ;
Rabbinowitsch, E ;
Rajandream, MA ;
Rutherford, K ;
Rutter, S ;
Seeger, K ;
Saunders, D ;
Sharp, S ;
Squares, R ;
Squares, S ;
Taylor, K ;
Warren, T ;
Wietzorrek, A ;
Woodward, J ;
Barrell, BG ;
Parkhill, J ;
Hopwood, DA .
NATURE, 2002, 417 (6885) :141-147
[10]   Bromobalhimycin and chlorobromobalhimycins -: Illuminating the potential of halogenases in glycopeptide antibiotic biosyntheses [J].
Bister, B ;
Bischoff, D ;
Nicholson, GJ ;
Stockert, S ;
Wink, J ;
Brunati, C ;
Donadio, S ;
Pelzer, S ;
Wohlleben, W ;
Süssmuth, RD .
CHEMBIOCHEM, 2003, 4 (07) :658-662