Low-temperature sintering of in-plane self-assembled ZnO nanorods for solution-processed high-performance thin film transistors

被引:55
作者
Sun, Baoquan [1 ,2 ]
Peterson, Rebecca L. [1 ]
Sirringhaus, Henning [1 ]
Mori, Kiyotaka [1 ]
机构
[1] Cavendish Lab, Cambridge CB3 0HE, England
[2] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87544 USA
关键词
D O I
10.1021/jp077740f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
ZnO is an attractive active semiconducting material for thin-film transistor (TFT) applications due to its high band gap, high mobility, ease of forming Ohmic contacts, and low toxicity. Here we present a process for solution fabrication of ZnO TFTs based on a simple, double-layer spin-coating process during which a dense layer of in-plane zinc oxide nanorods is deposited first, followed by coating of a chemical precursor solution and low-temperature annealing. First, a lower ZnO nanorod concentration can lead to the self-assembly of nanorods along the in-plane direction to form a relatively dense semiconductor layer. Then the chemical precursor solution sinters the nanorods and improves the contact between them. The n-channel TFTs exhibit high ON/OFF ratio of 10(5)-10(6), mobilities of similar to 1.2 cm(2) V-1 s(-1) and low threshold voltages of about -4 V with low hysteresis. We show that the quality of the semiconductor film and the minimum annealing temperature depends sensitively on the thickness and composition of the two layers.
引用
收藏
页码:18831 / 18835
页数:5
相关论文
共 26 条
[1]   Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide [J].
Barquinha, P. ;
Pimentel, A. ;
Marques, A. ;
Pereira, L. ;
Martins, R. ;
Fortunato, E. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (9-20) :1749-1752
[2]   Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering [J].
Carcia, PF ;
McLean, RS ;
Reilly, MH ;
Nunes, G .
APPLIED PHYSICS LETTERS, 2003, 82 (07) :1117-1119
[3]   High-performance, spin-coated zinc tin oxide thin-film transistors [J].
Chang, Y. -J. ;
Lee, D. -H. ;
Herman, G. S. ;
Chang, C. -H. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (05) :H135-H138
[4]   Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method [J].
Cheng, Hua-Chi ;
Chen, Chia-Fu ;
Tsay, Chien-Yie .
APPLIED PHYSICS LETTERS, 2007, 90 (01)
[5]   Thin-film transistors with amorphous indium gallium oxide channel layers [J].
Chiang, H. Q. ;
Hong, D. ;
Hung, C. M. ;
Presley, R. E. ;
Wager, John F. ;
Park, C. -H ;
Keszler, D. A. ;
Herman, G. S. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2006, 24 (06) :2702-2705
[6]  
Ellmer K, 1996, DIFFUS DE B, V51-5, P541
[7]   Resistivity of polycrystalline zinc oxide films: current status and physical limit [J].
Ellmer, K .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2001, 34 (21) :3097-3108
[8]   Fully transparent ZnO thin-film transistor produced at room temperature [J].
Fortunato, EMC ;
Barquinha, PMC ;
Pimentel, ACMBG ;
Gonçalves, AMF ;
Marques, AJS ;
Pereira, LMN ;
Martins, RFP .
ADVANCED MATERIALS, 2005, 17 (05) :590-+
[9]   ZnO-based transparent thin-film transistors [J].
Hoffman, RL ;
Norris, BJ ;
Wager, JF .
APPLIED PHYSICS LETTERS, 2003, 82 (05) :733-735
[10]   Organic thin film transistors: From theory to real devices [J].
Horowitz, G .
JOURNAL OF MATERIALS RESEARCH, 2004, 19 (07) :1946-1962