On the eigenproblems of PT-symmetric oscillators

被引:36
作者
Shin, KC [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.1366328
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the non-Hermitian Hamiltonian H=-d(2)/dx(2)+P(x(2))-(ix)(2n+1) on the real line, where P(x) is a polynomial of degree at most n greater than or equal to1 with all non-negative real coefficients (possibly P=0). It is proved that the eigenvalues lambda must be in the sector \arg lambda\less than or equal to pi/(2n+3). Also for the cubic case H=-d(2)/dx(2)-(ix)(3), we establish a zero-free region of the eigenfunction u and its derivative u' and we find some other interesting properties of eigenfunctions. (C) 2001 American Institute of Physics.
引用
收藏
页码:2513 / 2530
页数:18
相关论文
共 20 条
[1]   PT-symmetric sextic potentials [J].
Bagchi, B ;
Cannata, F ;
Quesne, C .
PHYSICS LETTERS A, 2000, 269 (2-3) :79-82
[2]   ANALYTIC CONTINUATION OF EIGENVALUE PROBLEMS [J].
BENDER, CM ;
TURBINER, A .
PHYSICS LETTERS A, 1993, 173 (06) :442-446
[3]   Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian [J].
Bender, CM ;
Dunne, GV .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (10) :4616-4621
[4]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[5]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[6]   Variational ansatz for PJ-symmetric quantum mechanics [J].
Bender, CM ;
Cooper, F ;
Meisinger, PN ;
Savage, VM .
PHYSICS LETTERS A, 1999, 259 (3-4) :224-231
[7]   Conjecture on the interlacing of zeros in complex Sturm-Liouville problems [J].
Bender, CM ;
Boettcher, S ;
Savage, VM .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (09) :6381-6387
[8]   Applying the linear δ expansion to the iφ3 interaction [J].
Blencowe, MP ;
Jones, HF ;
Korte, AP .
PHYSICAL REVIEW D, 1998, 57 (08) :5092-5099
[9]   Distributional Borel summability of odd anharmonic oscillators [J].
Caliceti, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (20) :3753-3770
[10]   PERTURBATION-THEORY OF ODD ANHARMONIC-OSCILLATORS [J].
CALICETI, E ;
GRAFFI, S ;
MAIOLI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 75 (01) :51-66