Dosimetric effect of respiration-gated beam on IMRT delivery

被引:31
作者
Duan, J [1 ]
Shen, S [1 ]
Fiveash, JB [1 ]
Brezovich, IA [1 ]
Popple, RA [1 ]
Pareek, PN [1 ]
机构
[1] Univ Alabama, Dept Radiat Oncol, Birmingham, AL 35233 USA
关键词
gated IMRT; respiratory gating; IMRT; dynamic wedge; dosimetric effect;
D O I
10.1118/1.1592017
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Intensity modulated radiation therapy (IMRT) with a dynamic multileaf collimator (DMLC) requires synchronization of DMLC leaf motion with dose delivery. A delay in DMLC communication is known to cause leaf lag and lead to dosimetric errors. The errors may be exacerbated by gated operation. The purpose of this study was to investigate the effect of leaf lag on the accuracy of doses delivered in gated IMRT. We first determined the effective leaf delay time by measuring the dose in a stationary phantom delivered by wedge-shaped fields. The wedge fields were generated by a DMLC at various dose rates. The so determined delay varied from 88.3 to 90.5 ms. The dosimetric effect of this delay on gated IMRT was studied by delivering wedge-shaped and clinical IMRT fields to moving and stationary phantoms at dose rates ranging from 100 to 600 MU/min, with and without gating. Respiratory motion was simulated by a linear sinusoidal motion of the phantom. An ionization chamber and films were employed for absolute dose and 2-D dose distribution measurements. Discrepancies between gated and nongated delivery to the stationary phantom were observed in both absolute dose and 2-D dose distribution measurements. These discrepancies increased monotonically with dose rate and frequency of beam interruptions, and could reach 3.7% of the total dose delivered to a 0.6 cm(3) ion chamber. Isodose lines could be shifted by as much as 3 mm. The results are consistent with the explanation that beam hold-offs in gated delivery allowed the lagging leaves to catch up with the delivered monitor units each time that the beam was interrupted. Low dose rates, slow leaf speeds and low frequencies of beam interruptions reduce the effect of this delay-and-catch-up cycle. For gated IMRT it is therefore important to find a good balance between the conflicting requirements of rapid dose delivery and delivery accuracy. (C) 2003 American Association of Physicists in Medicine.
引用
收藏
页码:2241 / 2252
页数:12
相关论文
共 28 条
[1]  
Agazaryan Nzhde, 2003, J Appl Clin Med Phys, V4, P40, DOI 10.1120/1.1525243
[2]   Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation [J].
Bortfeld, T ;
Jokivarsi, K ;
Goitein, M ;
Kung, J ;
Jiang, SB .
PHYSICS IN MEDICINE AND BIOLOGY, 2002, 47 (13) :2203-2220
[3]   Planning, delivery, and quality assurance of intensity-modulated radiotherapy using dynamic multileaf collimator: A strategy for large-scale implementation for the treatment of carcinoma of the prostate [J].
Burman, C ;
Chui, CS ;
Kutcher, G ;
Leibel, S ;
Zelefsky, M ;
LoSasso, T ;
Spirou, S ;
Wu, QW ;
Yang, J ;
Stein, J ;
Mohan, R ;
Fuks, Z ;
Ling, CC .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1997, 39 (04) :863-873
[4]   A prospective study of salivary function sparing in patients with head-and-neck cancers receiving intensity-modulated or three-dimensional radiation therapy: Initial results [J].
Chao, KSC ;
Deasy, JO ;
Markman, J ;
Haynie, J ;
Perez, CA ;
Purdy, JA ;
Low, DA .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 49 (04) :907-916
[5]   Testing of dynamic multileaf collimation [J].
Chui, CS ;
Spirou, S ;
LoSasso, T .
MEDICAL PHYSICS, 1996, 23 (05) :635-641
[6]  
Duan J, 2002, MED PHYS, V29, P1346
[7]  
Ezzell G A, 2001, J Appl Clin Med Phys, V2, P138, DOI 10.1120/1.1386508
[8]   Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging [J].
Ford, EC ;
Mageras, GS ;
Yorke, E ;
Rosenzweig, KE ;
Wagman, R ;
Ling, CC .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2002, 52 (02) :522-531
[9]   An evaluation of gating window size, delivery method, and composite field dosimetry of respiratory-gated IMRT [J].
Hugo, GD ;
Agazaryan, N ;
Solberg, TD .
MEDICAL PHYSICS, 2002, 29 (11) :2517-2525
[10]  
Jiang S, 2002, MED PHYS, V29, P1347