Dynamics and temperature-dependence of 1.3-μm GaInNAs double quantum-well lasers

被引:24
作者
Wei, Yongqiang [1 ]
Gustavsson, Johan S. [1 ]
Sadeghi, Mahdad [1 ]
Wang, Shumin [1 ]
Larsson, Anders [1 ]
机构
[1] Chalmers, Dept Microtechnol & Nanosci, Photon Lab, SE-41296 Gothenburg, Sweden
关键词
GaInNAs; semiconductor laser; temperature dependence;
D O I
10.1109/JQE.2006.884579
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have measured the small-signal modulation response of 1.3-mu m ridge waveguide GaInNAs double quantum-well lasers over a wide range of temperatures (25 degrees C-110 degrees C) and analyzed the temperature dependence of the modulation bandwidth and the various bandwidth limiting effects. The lasers have low threshold currents and high differential efficiencies with small temperature dependencies. A short-cavity (350 mu m) laser has a modulation bandwidth as high as 17 GHz at room temperature, reducing to 4 GHz at 110 degrees C, while a laser with a longer cavity (580 mu m) maintains a bandwidth of 8.6 GHz at 110 degrees C. We find that at all ambient temperatures the maximum bandwidth is limited by thermal effects as the temperature increases with current due to self-heating. The reduction and subsequent saturation of the resonance frequency with increasing current is due to a reduction of the differential gain and an increase of the threshold current with increasing temperature. We find large values for the differential gain and the gain compression factor. The differential gain decreases linearly with temperature while there is only a weak temperature dependence of the gain compression. At the highest temperature we also find evidence for transport effects that increase the damping rate and reduce the intrinsic bandwidth.
引用
收藏
页码:1274 / 1280
页数:7
相关论文
共 18 条
[1]   GAIN NONLINEARITY AND ITS TEMPERATURE-DEPENDENCE IN BULK AND QUANTUM-WELL QUATERNARY LASERS [J].
BERNUSSI, AA ;
TEMKIN, H ;
COBLENTZ, DL ;
LOGAN, RA .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1995, 7 (04) :348-350
[2]   Floor free 10-Gb/s transmission with directly modulated GaInNAs-GaAs 1.35-μm laser for metropolitan applications [J].
Dagens, B ;
Martinez, A ;
Make, D ;
Le Gouezigou, W ;
Provost, JG ;
Sallet, V ;
Merghem, K ;
Harmand, JC ;
Ramdane, A ;
Thedrez, B .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (05) :971-973
[3]   A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers [J].
Fehse, R ;
Tomic, S ;
Adams, AR ;
Sweeney, SJ ;
O'Reilly, EP ;
Andreev, A ;
Riechert, H .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2002, 8 (04) :801-810
[4]   1.3μm double quantum well GalnNAs distributed feedback laser diode with 13.8 GHz small signal modulation bandwidth [J].
Gollub, D ;
Moses, S ;
Forchel, A .
ELECTRONICS LETTERS, 2004, 40 (19) :1181-1182
[5]   10 Gbit/s modulation of 1.3μm GaInNAs lasers up to 110°C [J].
Gustavsson, J. S. ;
Wei, Y. Q. ;
Sadeghi, M. ;
Wang, S. M. ;
Larsson, A. .
ELECTRONICS LETTERS, 2006, 42 (16) :925-926
[6]   Lasing characteristics of low-threshold GaInNAs lasers grown by metalorganic chemical vapor deposition [J].
Kawaguchi, M ;
Miyamoto, T ;
Gouardes, E ;
Schlenker, D ;
Kondo, T ;
Koyama, F ;
Iga, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2001, 40 (7B) :L744-L746
[7]   GaInNAs: A novel material for long-wavelength semiconductor lasers [J].
Kondow, M ;
Kitatani, T ;
Nakatsuka, S ;
Larson, MC ;
Nakahara, K ;
Yazawa, Y ;
Okai, M ;
Uomi, K .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (03) :719-730
[8]   HIGH-SPEED QUANTUM-WELL LASERS AND CARRIER TRANSPORT EFFECTS [J].
NAGARAJAN, R ;
ISHIKAWA, M ;
FUKUSHIMA, T ;
GEELS, RS ;
BOWERS, JE .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (10) :1990-2008
[9]  
NAGARAJAN R, 1999, SEMICONDUCTOR LASERS, pR1
[10]   Highly reliable and high-yield 1300-nm InGaAlAs directly modulated ridge Fabry-Perot lasers, operating at 10-Gb/s, up to 110 °C, with constant current swing [J].
Paoletti, R ;
Agresti, M ;
Bertone, D ;
Bianco, L ;
Bruschi, C ;
Buccieri, A ;
Campi, R ;
Dorigoni, C ;
Gotta, P ;
Liotti, M ;
Magnetti, G ;
Montangero, P ;
Morello, G ;
Rigo, C ;
Riva, E ;
Rossi, G ;
Soderstrom, D ;
Stano, A ;
Valenti, P ;
Vallone, M ;
Meliga, M .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (01) :143-149