Ohmic contact characterization of AlGaN/GaN device layers with spatially localized LEEN spectroscopy

被引:8
作者
Jessen, GH
White, BD
Bradley, ST
Smith, PE
Brillson, LJ
Van Nostrand, JE
Fitch, R
Via, GD
Gillespie, JK
Dettmer, RW
Sewell, JS
机构
[1] Ohio State Univ, Dept Elect Engn, Dreese Lab 205, Columbus, OH 43210 USA
[2] USAF, Res Lab, Mat Directorate, Wright Patterson AFB, OH 45433 USA
[3] USAF, Res Lab, Sensors Directorate, Wright Patterson AFB, OH 45433 USA
关键词
GaN; AlGaN; cathodoluminescence; luminescence; low energy electron-excited nano-luminescence; ohmic contacts; HEMT;
D O I
10.1016/S0038-1101(02)00075-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low energy electron-excited nano-luminescence (LEEN) spectroscopy has been used to correlate higher intensities of deep level emissions with higher ohmic contact values on AlGaN/GaN device layers. Deep level defect emissions in the AlGaN layers have also been identified by LEEN as a signature of uncharacteristically high sheet resistances for a given wafer. The spectral features observed locally at the ohmic contact region are compared with direct electrical measurements of the same device structures. Ohmic contacts formed by annealing Ti/AlNi/Au at 800 degreesC for 30 s in nitrogen range from 1.0 x 10(-6) to 1.0 x 10(-4) Omega cm(2) (0.2-3.9 0 mm), with average sheet resistance values ranging from 650 to 2275 Omega/square as Al mole fraction decreases. The depth dependent characterization capacity of LEEN allows the density of defect emissions to be assigned to particular interfaces. For these samples, the deep level emissions found at 2.20 and 2.60-3.15 eV found near the surface of the sample while the defect emissions associated with high sheet resistance are found to be in the AlGaN layer itself. Unprocessed material shows that samples with the lowest amounts of midgap luminescence produce the lowest contact resistance, This information can be used to determine the outcome of device fabrication prior to contact formation. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1427 / 1431
页数:5
相关论文
共 13 条
[1]   Comparison between TiAl and TiAlNiAu ohmic contacts to n-type GaN [J].
Boudart, B ;
Trassaert, S ;
Wallart, X ;
Pesant, JC ;
Yaradou, O ;
Théron, D ;
Crosnier, Y ;
Lahreche, H ;
Omnes, F .
JOURNAL OF ELECTRONIC MATERIALS, 2000, 29 (05) :603-606
[2]   Correlation of contact resistance with microstructure for Au/Ni/Al/Ti/AlGaN/GaN ohmic contacts using transmission electron microscopy [J].
Bright, AN ;
Thomas, PJ ;
Weyland, M ;
Tricker, DM ;
Humphreys, CJ ;
Davies, R .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (06) :3143-3150
[3]   Reactive-ion-etched gallium nitride: Metastable defects and yellow luminescence [J].
Brown, SA ;
Reeves, RJ ;
Haase, CS ;
Cheung, R ;
Kirchner, C ;
Kamp, M .
APPLIED PHYSICS LETTERS, 1999, 75 (21) :3285-3287
[4]   Optical metastability of subband gap (2.2 eV) yellow luminescence in GaN [J].
Chang, YC ;
Oberhofer, AE ;
Muth, JF ;
Kolbas, RM ;
Davis, RF .
APPLIED PHYSICS LETTERS, 2001, 79 (03) :281-283
[5]  
Drouin D., 2001, MICROSC MICROANAL, V7, P684
[6]  
GOLDYS E, 2001, J NITRIDE SEMICOND R, V6, P1
[7]   MECHANISM OF YELLOW LUMINESCENCE IN GAN [J].
OGINO, T ;
AOKI, M .
JAPANESE JOURNAL OF APPLIED PHYSICS, 1980, 19 (12) :2395-2405
[8]   GaN electronics for high power, high temperature applications [J].
Pearton, SJ ;
Ren, F ;
Zhang, AP ;
Dang, G ;
Cao, XA ;
Lee, KP ;
Cho, H ;
Gila, BP ;
Johnson, JW ;
Monier, C ;
Abernathy, CR ;
Han, J ;
Baca, AG ;
Chyi, JI ;
Lee, CM ;
Nee, TE ;
Chuo, CC ;
Chu, SNG .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 82 (1-3) :227-231
[9]   Issues concerning the preparation of ohmic contacts to n-GaN [J].
Pelto, CM ;
Chang, YA ;
Chen, Y ;
Williams, RS .
SOLID-STATE ELECTRONICS, 2001, 45 (09) :1597-1605
[10]   Photoluminescence characteristics of Mg- and Si-doped GaN thin films grown by MOCVD technique [J].
Ramaiah, KS ;
Su, YK ;
Chang, SJ ;
Juang, FS ;
Chen, CH .
JOURNAL OF CRYSTAL GROWTH, 2000, 220 (04) :405-412