Resistive-pulse DNA detection with a conical nanopore sensor

被引:194
作者
Harrell, C. Chad
Choi, Youngseon
Horne, Lloyd P.
Baker, Lane A.
Siwy, Zuzanna S.
Martin, Charles R. [1 ]
机构
[1] Univ Florida, Dept Chem, Gainesville, FL 32611 USA
[2] Univ Florida, Ctr Res Bio Nano Interface, Gainesville, FL 32611 USA
关键词
D O I
10.1021/la061234k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we describe resistive-pulse sensing of two large DNAs, a single-stranded phage DNA (7250 bases) and a double-stranded plasmid DNA (6600 base pairs), using a conically shaped nanopore in a track-etched polycarbonate membrane as the sensing element. The conically shaped nanopore had a small-diameter (tip) opening of 40 nm and a large-diameter (base) opening of 1.5 mu m. The DNAs were detected using the resistive-pulse, sometimes called stochastic sensing, method. This entails applying a transmembrane potential difference and monitoring the resulting ion current flowing through the nanopore. The phage DNA was driven electrophoretically through the nanopore (from tip to base), and these translocation events were observed as transient blocks in the ion current. We found that the frequency of these current-block events scales linearly with the concentration of the DNA and with the magnitude of the applied transmembrane potential. Increasing the applied transmembrane potential also led to a decrease in the duration of the current-block events. We also analyzed current-block events for the double-stranded plasmid DNA. However, because this DNA is too large to enter the tip opening of the nanopore, it could not translocate the pore. As a result, much shorter duration current-block events were observed, which we postulate are associated with bumping of the double-stranded DNA against the tip opening.
引用
收藏
页码:10837 / 10843
页数:7
相关论文
共 53 条
[1]  
[Anonymous], ELECTROCHEMICAL METH
[2]   Diode-like single-ion track membrane prepared by electro-stopping [J].
Apel, PY ;
Korchev, YE ;
Siwy, Z ;
Spohr, R ;
Yoshida, M .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2001, 184 (03) :337-346
[3]   Recognizing a single base in an individual DNA strand:: A step toward DNA sequencing in nanopores [J].
Ashkenasy, N ;
Sánchez-Quesada, J ;
Bayley, H ;
Ghadiri, MR .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (09) :1401-1404
[4]   Toward single molecule DNA sequencing:: Direct identification of ribonucleoside and deoxyribonucleoside 5′-monophosphates by using an engineered protein nanopore equipped with a molecular adapter [J].
Astier, Y ;
Braha, O ;
Bayley, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (05) :1705-1710
[5]  
Bard A. J., 2001, ELECTROCHEMICAL METH, P29
[6]   Resistive-pulse sensing - From microbes to molecules [J].
Bayley, H ;
Martin, CR .
CHEMICAL REVIEWS, 2000, 100 (07) :2575-2594
[7]   Designed protein pores as components for biosensors [J].
Braha, O ;
Walker, B ;
Cheley, S ;
Kasianowicz, JJ ;
Song, LZ ;
Gouaux, JE ;
Bayley, H .
CHEMISTRY & BIOLOGY, 1997, 4 (07) :497-505
[8]   Probing single DNA molecule transport using fabricated nanopores [J].
Chen, P ;
Gu, JJ ;
Brandin, E ;
Kim, YR ;
Wang, Q ;
Branton, D .
NANO LETTERS, 2004, 4 (11) :2293-2298
[9]   Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores [J].
Chen, P ;
Mitsui, T ;
Farmer, DB ;
Golovchenko, J ;
Gordon, RG ;
Branton, D .
NANO LETTERS, 2004, 4 (07) :1333-1337
[10]   Characterization of nucleic acids by nanopore analysis [J].
Deamer, DW ;
Branton, D .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (10) :817-825