Rational Fabrication of Graphene Nanoribbons Using a Nanowire Etch Mask

被引:344
作者
Bai, Jingwei [2 ]
Duan, Xiangfeng [1 ,3 ]
Huang, Yu [2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
关键词
D O I
10.1021/nl900531n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a rational approach to fabricate graphene nanoribbons (GNRs) with sub-10 nm width by employing chemically synthesized nanowires as the physical protection mask in oxygen plasma etch. Atomic force microscopy study shows that the patterns of the resulted nanoribbons replicate exactly those of mask nanowires so that ribbons or branched or crossed graphene nanostructures can be produced. Our study shows a linear scaling relation between the resulted GNR widths and mask nanowire diameters with variable slopes for different etching times. GNRs with controllable widths down to 6 nm have been demonstrated. We have fabricated GNR field effect transistors (FETs) with nanoribbons directly connected to bulk graphene electrodes. Electrical measurements on an 8 nm GNR-FET show room temperature transistor behavior with an on/off ratio around 160, indicating appreciable band gaps arise due to lateral confinement. We find the on/off ratio in the log scale inversely scales with ribbon width. This approach opens a new avenue to graphene nanoribbons and other graphene nanostructures; in the deep nanometer regime without sophisticated lithography. It thus opens exciting new opportunities for graphene nanodevice engineering.
引用
收藏
页码:2083 / 2087
页数:5
相关论文
共 36 条
[11]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[12]   Control of thickness and orientation of solution-grown silicon nanowires [J].
Holmes, JD ;
Johnston, KP ;
Doty, RC ;
Korgel, BA .
SCIENCE, 2000, 287 (5457) :1471-1473
[13]   Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires [J].
Huang, Y ;
Lieber, CM .
PURE AND APPLIED CHEMISTRY, 2004, 76 (12) :2051-2068
[14]   Sub-two nanometer single crystal Au nanowires [J].
Huo, Ziyang ;
Tsung, Chia-kuang ;
Huang, Wenyu ;
Zhang, Xiaofeng ;
Yang, Peidong .
NANO LETTERS, 2008, 8 (07) :2041-2044
[15]   Ballistic carbon nanotube field-effect transistors [J].
Javey, A ;
Guo, J ;
Wang, Q ;
Lundstrom, M ;
Dai, HJ .
NATURE, 2003, 424 (6949) :654-657
[16]   Highly conducting graphene sheets and Langmuir-Blodgett films [J].
Li, Xiaolin ;
Zhang, Guangyu ;
Bai, Xuedong ;
Sun, Xiaoming ;
Wang, Xinran ;
Wang, Enge ;
Dai, Hongjie .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :538-542
[17]   Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J].
Li, Xiaolin ;
Wang, Xinran ;
Zhang, Li ;
Lee, Sangwon ;
Dai, Hongjie .
SCIENCE, 2008, 319 (5867) :1229-1232
[18]   Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices [J].
Lin, Yung-Chen ;
Lu, Kuo-Chang ;
Wu, Wen-Wei ;
Bai, Jingwei ;
Chen, Lih J. ;
Tu, K. N. ;
Huang, Yu .
NANO LETTERS, 2008, 8 (03) :913-918
[19]   Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction [J].
Lu, Xianmao ;
Yavuz, Mustafa S. ;
Tuan, Hsing-Yu ;
Korgel, Brian A. ;
Xia, Younan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (28) :8900-+
[20]   Current saturation in zero-bandgap, topgated graphene field-effect transistors [J].
Meric, Inanc ;
Han, Melinda Y. ;
Young, Andrea F. ;
Ozyilmaz, Barbaros ;
Kim, Philip ;
Shepard, Kenneth L. .
NATURE NANOTECHNOLOGY, 2008, 3 (11) :654-659