Continuous Growth of Hexagonal Graphene and Boron Nitride In-Plane Heterostructures by Atmospheric Pressure Chemical Vapor Deposition

被引:170
作者
Han, Gang Hee [1 ,3 ]
Rodriguez-Manzo, Julio A. [1 ]
Lee, Chan-Woo [2 ]
Kybert, Nicholas J. [1 ]
Lerner, Mitchell B. [1 ]
Qi, Zhengqing John [1 ]
Dattoli, Eric N. [1 ]
Rappe, Andrew M. [2 ]
Drndic, Marija [1 ]
Johnson, A. T. Charlie [1 ]
机构
[1] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Chem, Makineni Theoret Labs, Philadelphia, PA 19104 USA
[3] Sungkyunkwan Univ SKKU, Dept Phys, Suwon, South Korea
基金
美国国家科学基金会;
关键词
graphene; boron nitride; heterostructure; chemical vapor deposition; electronic devices; BAND-GAP; NANORIBBONS; GRAINS; STATE;
D O I
10.1021/nn404331f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric.
引用
收藏
页码:10129 / 10138
页数:10
相关论文
共 48 条
[1]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[2]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[3]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[4]   No Graphene Etching in Purified Hydrogen [J].
Choubak, Saman ;
Biron, Maxime ;
Levesque, Pierre L. ;
Martel, Richard ;
Desjardins, Patrick .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (07) :1100-1103
[5]  
Ci L, 2010, NAT MATER, V9, P430, DOI [10.1038/nmat2711, 10.1038/NMAT2711]
[6]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[7]   Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons [J].
Erickson, Kris J. ;
Gibb, Ashley L. ;
Sinitskii, Alexander ;
Rousseas, Michael ;
Alem, Nasim ;
Tour, James M. ;
Zettl, Alex K. .
NANO LETTERS, 2011, 11 (08) :3221-3226
[8]   Band gap opening of graphene by doping small boron nitride domains [J].
Fan, Xiaofeng ;
Shen, Zexiang ;
Liu, A. Q. ;
Kuo, Jer-Lai .
NANOSCALE, 2012, 4 (06) :2157-2165
[9]   Lateral Graphene-hBCN Heterostructures as a Platform for Fully Two-Dimensional Transistors [J].
Fiori, Gianluca ;
Betti, Alessandro ;
Bruzzone, Samantha ;
Iannaccone, Giuseppe .
ACS NANO, 2012, 6 (03) :2642-2648
[10]   Peculiar localized state at zigzag graphite edge [J].
Fujita, M ;
Wakabayashi, K ;
Nakada, K ;
Kusakabe, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) :1920-1923