Electrical Manipulation of Nanofilaments in Transition-Metal Oxides for Resistance-Based Memory

被引:383
作者
Lee, Myoung-Jae [1 ]
Han, Seungwu [2 ]
Jeon, Sang Ho [3 ]
Park, Bae Ho [3 ]
Kang, Bo Soo [1 ]
Ahn, Seung-Eon [1 ]
Kim, Ki Hwan [1 ]
Lee, Chang Bum [1 ]
Kim, Chang Jung [1 ]
Yoo, In-Kyeong [1 ]
Seo, David H. [4 ]
Li, Xiang-Shu [1 ]
Park, Jong-Bong [1 ]
Lee, Jung-Hyun [1 ]
Park, Youngsoo [1 ]
机构
[1] Samsung Elect Co Ltd, Samsung Adv Inst Technol, Yongin 446712, Gyeonggi Do, South Korea
[2] Ewha Womans Univ, Dept Phys, Seoul 120750, South Korea
[3] Konkuk Univ, Div Quantum Phases & Devices, Sch Phys, Seoul 143701, South Korea
[4] Stanford Univ, Dept Mat Sci & Engn, Palo Alto, CA 94305 USA
关键词
D O I
10.1021/nl803387q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fabrication of controlled nanostructures such as quantum dots, nanotubes, nanowires, and nanopillars has progressed rapidly over the past 10 years. However, both bottom-up and top-down methods to integrate the nanostructures are met with several challenges. For practical applications with the high level of the integration, an approach that can fabricate the required structures locally is desirable. In addition, the electrical signal to construct and control the nanostructures can provide significant advantages toward the stability and ordering. Through experiments on the negative resistance switching phenomenon in Pt-NiO-Pt structures, we have fabricated nanofilament channels that can be electrically connected or disconnected. Various analyses indicate that the nanofilaments are made of nickel and are formed at the grain boundaries. The scaling behaviors of the nickel nanofilaments were closely examined, with respect to the switching time, power, and resistance. In particular, the 100 nm x 100 nm cell was switchable on the nanosecond scale, making them ideal for the basis for high-speed, high-density, nonvolatile memory applications.
引用
收藏
页码:1476 / 1481
页数:6
相关论文
共 18 条
[1]   Si/a-Si core/shell nanowires as nonvolatile crossbar switches [J].
Dong, Yajie ;
Yu, Guihua ;
McAlpine, Michael C. ;
Lu, Wei ;
Lieber, Charles M. .
NANO LETTERS, 2008, 8 (02) :386-391
[2]   Growth of nanowire superlattice structures for nanoscale photonics and electronics [J].
Gudiksen, MS ;
Lauhon, LJ ;
Wang, J ;
Smith, DC ;
Lieber, CM .
NATURE, 2002, 415 (6872) :617-620
[3]   p-ZnO/n-GaN heterostructure ZnO light-emitting diodes -: art. no. 222101 [J].
Hwang, DK ;
Kang, SH ;
Lim, JH ;
Yang, EJ ;
Oh, JY ;
Yang, JH ;
Park, SJ .
APPLIED PHYSICS LETTERS, 2005, 86 (22) :1-3
[4]   In situ observation of carbon-nanopillar tubulization caused by liquidlike iron particles -: art. no. 215702 [J].
Ichihashi, T ;
Fujita, J ;
Ishida, M ;
Ochiai, Y .
PHYSICAL REVIEW LETTERS, 2004, 92 (21) :215702-1
[5]   First-principles modeling of resistance switching in perovskite oxide material [J].
Jeon, Sang Ho ;
Park, Bae Ho ;
Lee, Jaichan ;
Lee, Bora ;
Han, Seungwu .
APPLIED PHYSICS LETTERS, 2006, 89 (04)
[6]   Grain-boundary diffusion of cation vacancies in nickel oxide: A molecular-dynamics study [J].
Karakasidis, T ;
Meyer, M .
PHYSICAL REVIEW B, 1997, 55 (20) :13853-13864
[7]   Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide [J].
Kinoshita, K. ;
Tamura, T. ;
Aoki, M. ;
Sugiyama, Y. ;
Tanaka, H. .
APPLIED PHYSICS LETTERS, 2006, 89 (10)
[8]   Comparative structural and electrical analysis of NiO and Ti doped NiO as materials for resistance random access memory [J].
Lee, M. J. ;
Park, Y. ;
Ahn, S. E. ;
Kang, B. S. ;
Lee, C. B. ;
Kim, K. H. ;
Xianyu, W. X. ;
Yoo, I. K. ;
Lee, J. H. ;
Chung, S. J. ;
Kim, Y. H. ;
Lee, C. S. ;
Choi, K. N. ;
Chung, K. S. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (01)
[9]   A low-temperature-grown oxide diode as a new switch element for high-density, nonvolatile memories [J].
Lee, Myoung-Jae ;
Seo, Sunae ;
Kim, Dong-Chirl ;
Ahn, Seung-Eon ;
Seo, David H. ;
Yoo, In-Kyeong ;
Baek, In-Gyu ;
Kim, Dong-Sik ;
Byun, Ik-Su ;
Kim, Soo-Hong ;
Hwang, In-Rok ;
Kim, Jin-Soo ;
Jeon, Sang-Ho ;
Park, Bae Ho .
ADVANCED MATERIALS, 2007, 19 (01) :73-+
[10]   Technologies for nanofluidic systems:: top-down vs. bottom-up -: a review [J].
Mijatovic, D ;
Eijkel, JCT ;
van den Berg, A .
LAB ON A CHIP, 2005, 5 (05) :492-500