Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory

被引:247
作者
Russo, Ugo [1 ,2 ,3 ]
Kamalanathan, Deepak [3 ]
Ielmini, Daniele [1 ,2 ]
Lacaita, Andrea L. [1 ,2 ,4 ]
Kozicki, Michael N. [3 ]
机构
[1] Politecn Milan, Dipartimento Elettron & Informaz, I-20133 Milan, Italy
[2] Politecn Milan, IU NET, I-20133 Milan, Italy
[3] Arizona State Univ, Ctr Appl Nanoion, Tempe, AZ 85287 USA
[4] CNR, IFN, Sez Politecn Milano, I-20133 Milan, Italy
关键词
Electrical switching; modeling; multilevel storage; non-volatile memory; solid electrolyte; HIGH-FIELD CONDUCTION; MODEL; RESET;
D O I
10.1109/TED.2009.2016019
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Programmable metallization cell (PMC) memory, also known as conductive bridging RAM (CBRAM), is a resistive-switching memory based on non-volatile formation and dissolution of a conductive filament (CF) in a solid electrolyte. Although ease of fabrication, promising performance and multilevel (ML) capability make the PMC a possible candidate for post-Flash nonvolatile memories, further physical understanding is required to better assess its true potential. In this work, we investigate the kinetics involved in the programming operation (i.e., transition from the high resistance to the low resistance state), which occurs by voltage-driven ion migration and electrochemical deposition, and results in CF formation and growth. The main kinetic parameters control-ling the programming operation are extracted from our electrical data. Also, CF growth and corresponding resistance decrease is shown to be controllable with reasonable accuracy in pulse mode by employing a variable load resistance which can dynamically control the programming kinetics. A semi-analytical physical model is shown to account for experimental data and allows for the engineering of fast and reliable ML programming in one transistor - one resistor (1T-1R) devices.
引用
收藏
页码:1040 / 1047
页数:8
相关论文
共 29 条
[1]   A novel resistance memory with high scalability and nanosecond switching [J].
Aratani, K. ;
Ohba, K. ;
Mizuguchi, T. ;
Yasuda, S. ;
Shiimoto, T. ;
Tsushima, T. ;
Sone, T. ;
Endo, K. ;
Kouchiyama, A. ;
Sasaki, S. ;
Maesaka, A. ;
Yamada, N. ;
Narisawa, H. .
2007 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2007, :783-786
[2]   Future directions and challenges for ETox flash memory scaling [J].
Atwood, G .
IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2004, 4 (03) :301-305
[3]  
Baek IG, 2005, INT EL DEVICES MEET, P769
[4]   Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses [J].
Baek, IG ;
Lee, MS ;
Seo, S ;
Lee, MJ ;
Seo, DH ;
Suh, DS ;
Park, JC ;
Park, SO ;
Kim, HS ;
Yoo, IK ;
Chung, UI ;
Moon, JT .
IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST, 2004, :587-590
[5]   Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch [J].
Banno, Naoki ;
Sakamoto, Toshitsuyu ;
Hasegawa, Tsuyoshi ;
Terabe, Kazuya ;
Aono, Masakazu .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (4B) :3666-3668
[6]  
Bruce P.G., 1995, Solid state electrochemistry, V1st
[7]  
CROW D.R., 1988, PRINCIPLES APPL ELEC
[8]   An embeddable multilevel-cell solid electrolyte memory array [J].
Gilbert, Nad E. ;
Kozicki, Michael N. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2007, 42 (06) :1383-1391
[9]   A macro model of programmable metallization cell devices [J].
Gilbert, NE ;
Gopalan, C ;
Kozicki, MN .
SOLID-STATE ELECTRONICS, 2005, 49 (11) :1813-1819
[10]   Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems [J].
Guo, Xin ;
Schindler, Christina .
APPLIED PHYSICS LETTERS, 2007, 91 (13)