Low-temperature passivation of amorphous-silicon thin-film transistors with supercritical fluids

被引:22
作者
Tsai, Chih-Tsung [1 ]
Liu, Po-Tsun
Chang, Ting-Chang
Wang, Chen-Wen
Yang, Po-Yu
Yeh, Fon-Shan
机构
[1] Natl Tsing Hua Univ, Inst Elect Engn, Hsinchu 300, Taiwan
[2] Natl Chiao Tung Univ, Dept Photon, Hsinchu 300, Taiwan
[3] Natl Chiao Tung Univ, Display Inst, Hsinchu 300, Taiwan
[4] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 804, Taiwan
[5] Natl Sun Yat Sen Univ, Inst electroopt Engn, Ctr Nanosci & Nanotechnol, Kaohsiung 804, Taiwan
关键词
amorphous-silicon thin-film transistors (a-Si : HTFTs); density of states (DOSs); supercritical CO2 (SCCO2); fluids technology;
D O I
10.1109/LED.2007.897869
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, supercritical CO2 (SCCO2) fluids technology is employed for the first time to effectively passivate the defect states in hydrogenated amorphous-silicon thin-film transistors (a-Si:H TFTs) at low temperature (150 degrees C). With the high transport and diffusion properties of SCCO2 fluids, it is proposed to act as a transporter in delivering the H2O molecules into the amorphous-silicon film and repairing defect states by the H2O molecules. In addition, the propyl alcohol is used as the surfactant between nonpolar-SCCO2 fluids and polar-H2O molecules for mingling H2O molecules uniformly with the SCCO2 fluids. After the treatment Of SCCO2 fluids mixed with water and propyl alcohol, the a-Si:H TFT exhibited superior transfer characteristics and lower threshold voltage. The improvement in electrical characteristics could be verified by the significant reduction of density of states in the mobility gap of amorphous-silicon.
引用
收藏
页码:584 / 586
页数:3
相关论文
共 17 条
[1]   Effects of NH3 plasma passivation on N-channel polycrystalline silicon thin-film transistors [J].
Cheng, HC ;
Wang, FS ;
Huang, CY .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1997, 44 (01) :64-68
[2]  
CHERN HN, 1993, IEEE T ELECTRON DEV, V40, P2301, DOI 10.1109/16.249479
[3]   A novel method of removing impurities from multilevel interconnect materials [J].
Fukuda, T ;
Yanazawa, H .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2004, 43 (03) :936-939
[4]  
GLOBUS T, 1994, MATER RES SOC SYMP P, V336, P823, DOI 10.1557/PROC-336-823
[5]   Current-source a-Si:H thin-film transistor circuit for active-matrix organic light-emitting displays [J].
He, Y ;
Hattori, R ;
Kanicki, J .
IEEE ELECTRON DEVICE LETTERS, 2000, 21 (12) :590-592
[6]   Analysis of defects in polycrystalline silicon thin films using Raman scattering spectroscopy [J].
Kitahara, K ;
Ohnishi, K ;
Katoh, Y ;
Yamazaki, R ;
Kurosawa, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2003, 42 (11) :6742-6747
[7]   Evaluation of electrical characteristics and trap-state density in bottom-gate polycrystalline thin film transistors processed with high-pressure water vapor annealing [J].
Kunii, M .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (2A) :660-665
[8]   Activation of carbon nanotube emitters by using supercritical carbon dioxide fluids with propyl alcohol [J].
Liu, PT ;
Tsai, CT ;
Chang, TC ;
Kin, KT ;
Chang, PL ;
Chen, CM ;
Cheng, HF .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (04) :G124-G126
[9]   Formation of mechanically strong low-k film using supercritical fluid dry technology [J].
Ogawa, S ;
Takashi, N ;
Egami, M ;
Nakashima, A .
PROCEEDINGS OF THE IEEE 2002 INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE, 2002, :220-222
[10]   THE PHYSICS OF AMORPHOUS-SILICON THIN-FILM TRANSISTORS [J].
POWELL, MJ .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1989, 36 (12) :2753-2763