Intrinsic geometry of quantum adiabatic evolution and quantum phase transitions

被引:72
作者
Rezakhani, A. T. [1 ,2 ]
Abasto, D. F. [2 ,3 ]
Lidar, D. A. [1 ,2 ,3 ,4 ]
Zanardi, P. [2 ,3 ]
机构
[1] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[2] Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
[4] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 01期
基金
美国国家科学基金会;
关键词
STATISTICAL DISTANCE; COMPUTATION; ALGORITHM;
D O I
10.1103/PhysRevA.82.012321
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We elucidate the geometry of quantum adiabatic evolution. By minimizing the deviation from adiabaticity, we find a Riemannian metric tensor underlying adiabatic evolution. Equipped with this tensor, we identify a unified geometric description of quantum adiabatic evolution and quantum phase transitions that generalizes previous treatments to allow for degeneracy. The same structure is relevant for applications in quantum information processing, including adiabatic and holonomic quantum computing, where geodesics over the manifold of control parameters correspond to paths which minimize errors. We illustrate this geometric structure with examples, for which we explicitly find adiabatic geodesics. By solving the geodesic equations in the vicinity of a quantum critical point, we identify universal characteristics of optimal adiabatic passage through a quantum phase transition. In particular, we show that in the vicinity of a critical point describing a second-order quantum phase transition, the geodesic exhibits power-law scaling with an exponent given by twice the inverse of the product of the spatial and scaling dimensions.
引用
收藏
页数:16
相关论文
共 57 条
[31]   Adiabatic approximation with exponential accuracy for many-body systems and quantum computation [J].
Lidar, Daniel A. ;
Rezakhani, Ali T. ;
Hamma, Alioscia .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
[32]   Operator fidelity susceptibility, decoherence, and quantum criticality [J].
Lu, Xiao-Ming ;
Sun, Zhe ;
Wang, Xiaoguang ;
Zanardi, Paolo .
PHYSICAL REVIEW A, 2008, 78 (03)
[33]  
MA YQ, 2010, ARXIV10034040, P43001
[34]  
Nakahara M., 2003, Geometry, Topology and Physics
[35]   Quantum computation as geometry [J].
Nielsen, MA ;
Dowling, MR ;
Gu, M ;
Doherty, AC .
SCIENCE, 2006, 311 (5764) :1133-1135
[36]   QUANTUM ESTIMATION FOR QUANTUM TECHNOLOGY [J].
Paris, Matteo G. A. .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 :125-137
[37]   Quantum Adiabatic Brachistochrone [J].
Rezakhani, A. T. ;
Kuo, W. -J. ;
Hamma, A. ;
Lidar, D. A. ;
Zanardi, P. .
PHYSICAL REVIEW LETTERS, 2009, 103 (08)
[38]  
REZAKHANI AT, UNPUB, P43001
[39]   Quantum search by local adiabatic evolution [J].
Roland, J ;
Cerf, NJ .
PHYSICAL REVIEW A, 2002, 65 (04) :6
[40]  
Sachdev S., 1999, QUANTUM PHASE TRANSI, DOI DOI 10.1017/CBO9780511973765