Gating of Single-Layer Graphene with Single-Stranded Deoxyribonucleic Acids

被引:55
作者
Lin, Jian [1 ]
Teweldebrhan, Desalegne [2 ]
Ashraf, Khalid [2 ]
Liu, Guanxiong [2 ]
Jing, Xiaoye [2 ]
Yan, Zhong [2 ]
Li, Rong [3 ]
Ozkan, Mihri [2 ]
Lake, Roger K. [2 ]
Balandin, Alexander A. [2 ]
Ozkan, Cengiz S. [1 ]
机构
[1] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
[3] Univ Calif Riverside, Dept Biochem, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
density functional calculations; DNA; graphene; patterning; Raman spectroscopy; CARBON NANOTUBE HYBRIDS; MOLECULAR-DYNAMICS; TRANSISTOR; SCATTERING; GAS;
D O I
10.1002/smll.200902379
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Patterning of biomolecules on graphene layers could provide new avenues to modulate their electrical properties for novel electronic devices. Single-stranded deoxyribonucleic acids (ssDNAs) are found to act as negative-potential gating agents that increase the hole density in single-layer graphene. Current-voltage measurements of the hybrid ssDNA/graphene system indicate a shift in the Dirac point and "intrinsic" conductance after ssDNA is patterned. The effect of ssDNA is to increase the hole density in the graphene layer, which is calculated to be on the order of 1.8 x 10(12) cm(-2). This increased density is consistent with the Raman frequency shifts in the G-peak and 2D band positions and the corresponding changes in the G-peak full width at half maximum. Ab initio calculations using density functional theory rule out significant charge transfer or modification of the graphene band structure in the presence of ssDNA fragments.
引用
收藏
页码:1150 / 1155
页数:6
相关论文
共 47 条
[31]   Electric field effect in atomically thin carbon films [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Zhang, Y ;
Dubonos, SV ;
Grigorieva, IV ;
Firsov, AA .
SCIENCE, 2004, 306 (5696) :666-669
[32]  
P.J. Linstrom, 2008, NIST CHEM WEBBOOK, V69
[33]   Properties of graphene produced by the high pressure-high temperature growth process [J].
Parvizi, F. ;
Teweldebrhan, D. ;
Ghosh, S. ;
Calizo, I. ;
Balandin, A. A. ;
Zhu, H. ;
Abbaschian, R. .
MICRO & NANO LETTERS, 2008, 3 (01) :29-34
[34]   Breakdown of the adiabatic Born-Oppenheimer approximation in graphene [J].
Pisana, Simone ;
Lazzeri, Michele ;
Casiraghi, Cinzia ;
Novoselov, Kostya S. ;
Geim, A. K. ;
Ferrari, Andrea C. ;
Mauri, Francesco .
NATURE MATERIALS, 2007, 6 (03) :198-201
[35]   ABINITIO MULTICENTER TIGHT-BINDING MODEL FOR MOLECULAR-DYNAMICS SIMULATIONS AND OTHER APPLICATIONS IN COVALENT SYSTEMS [J].
SANKEY, OF ;
NIKLEWSKI, DJ .
PHYSICAL REVIEW B, 1989, 40 (06) :3979-3995
[36]   Detection of individual gas molecules adsorbed on graphene [J].
Schedin, F. ;
Geim, A. K. ;
Morozov, S. V. ;
Hill, E. W. ;
Blake, P. ;
Katsnelson, M. I. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (09) :652-655
[37]   Tunable graphene single electron transistor [J].
Stampfer, C. ;
Schurtenberger, E. ;
Molitor, F. ;
Guettinger, J. ;
Ihn, T. ;
Ensslin, K. .
NANO LETTERS, 2008, 8 (08) :2378-2383
[38]   Raman imaging of doping domains in graphene on SiO2 [J].
Stampfer, C. ;
Molitor, F. ;
Graf, D. ;
Ensslin, K. ;
Jungen, A. ;
Hierold, C. ;
Wirtz, L. .
APPLIED PHYSICS LETTERS, 2007, 91 (24)
[39]   Electrochemical modification of graphene [J].
Sundaram, Ravi Shankar ;
Gomez-Navarro, Cristina ;
Balasubramanian, Kannan ;
Burghard, Marko ;
Kern, Klaus .
ADVANCED MATERIALS, 2008, 20 (16) :3050-3053
[40]   Measurement of scattering rate and minimum conductivity in graphene [J].
Tan, Y. -W. ;
Zhang, Y. ;
Bolotin, K. ;
Zhao, Y. ;
Adam, S. ;
Hwang, E. H. ;
Das Sarma, S. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2007, 99 (24)