Tuning the lateral density of ZnO nanowire arrays and its application as physical templates for radial nanowire heterostructures

被引:27
作者
Cao, B. Q. [1 ,2 ]
Zuniga-Perez, J. [2 ]
Czekalla, C. [2 ]
Hilmer, H. [2 ]
Lenzner, J. [2 ]
Boukos, N. [3 ]
Travlos, A.
Lorenz, M. [2 ]
Grundmann, M. [2 ]
机构
[1] Univ Jinan, Sch Mat Sci & Engn, Shandong 250022, Peoples R China
[2] Univ Leipzig, Fak Phys & Geowissensch, Inst Expt Phys 2, D-04103 Leipzig, Germany
[3] Natl Ctr Sci Res Demokritos, Inst Mat Sci, GR-15310 Athens, Greece
关键词
PULSED-LASER DEPOSITION; CONTROLLED GROWTH; FIELD-EMISSION; OPTICAL-PROPERTIES; PATTERNED GROWTH; NANORODS; COST;
D O I
10.1039/b926475b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lateral density of ZnO nanowire arrays grown with pulsed laser deposition (PLD) can be tuned from 1 to 10(-2) mu m(-2) by introducing a ZnO nucleation layer and optimizing the distance between the substrate and the ablated target. High-density (similar to 10 mu m(-2)) nanowire arrays can be grown on sapphire substrates with or without gold catalysts. However, if a ZnO wetting layer was adopted, the density of ZnO nanowires could be controlled with high reproducibility. The decreasing growth density is attributed to a competition between the two-dimensional film epitaxy and one-dimensional nanowire growth. The dependence of nanowire density on the substrate-target distance mainly arises from the expansion dynamics of the plasma plume and the chamber geometry. Using low-density nanowires as templates, a general PLD route was developed to grow radial nanowire heterostructures. Here we demonstrate MgZnO/ZnO/MgZnO nanowire quantum wells and ZnO/ZnO:P core-shell nanowire p-n junctions.
引用
收藏
页码:3848 / 3854
页数:7
相关论文
共 49 条
[1]   Fabrication and photoluminescent characteristics of ZnO/Mg0.2Zn0.8O coaxial nanorod single quantum well structures [J].
Bae, Jun Young ;
Yoo, Jinkyoung ;
Yi, Gyu-Chul .
APPLIED PHYSICS LETTERS, 2006, 89 (17)
[2]   Phosphorus acceptor doped ZnO nanowires prepared by pulsed-laser deposition [J].
Cao, B. Q. ;
Lorenz, M. ;
Rahm, A. ;
von Wenckstern, H. ;
Czekalla, C. ;
Lenzner, J. ;
Benndorf, G. ;
Grundmann, M. .
NANOTECHNOLOGY, 2007, 18 (45)
[3]   p-type conducting ZnO:P microwires prepared by direct carbothermal growth [J].
Cao, B. Q. ;
Lorenz, M. ;
Brandt, M. ;
von Wenckstern, H. ;
Lenzner, J. ;
Biehne, G. ;
Grundmann, M. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2008, 2 (01) :37-39
[4]   Homogeneous core/shell ZnO/ZnMgO quantum well heterostructures on vertical ZnO nanowires [J].
Cao, B. Q. ;
Zuniga-Perez, J. ;
Boukos, N. ;
Czekalla, C. ;
Hilmer, H. ;
Lenzner, J. ;
Travlos, A. ;
Lorenz, M. ;
Grundmann, M. .
NANOTECHNOLOGY, 2009, 20 (30)
[5]   Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach [J].
Fan, HJ ;
Lee, W ;
Scholz, R ;
Dadgar, A ;
Krost, A ;
Nielsch, K ;
Zacharias, M .
NANOTECHNOLOGY, 2005, 16 (06) :913-917
[6]   Semiconductor nanowires: From self-organization to patterned growth [J].
Fan, HJ ;
Werner, P ;
Zacharias, M .
SMALL, 2006, 2 (06) :700-717
[7]   Inorganic semiconductor nanostructures and their field-emission applications [J].
Fang, Xiaosheng ;
Bando, Yoshio ;
Gautam, Ujjal K. ;
Ye, Changhui ;
Golberg, Dmitri .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (05) :509-522
[8]   General route to vertical ZnO nanowire arrays using textured ZnO seeds [J].
Greene, LE ;
Law, M ;
Tan, DH ;
Montano, M ;
Goldberger, J ;
Somorjai, G ;
Yang, PD .
NANO LETTERS, 2005, 5 (07) :1231-1236
[9]   Directed growth of ordered arrays of small-diameter ZnO nanowires [J].
Greyson, EC ;
Babayan, Y ;
Odom, TW .
ADVANCED MATERIALS, 2004, 16 (15) :1348-+
[10]   Density-controlled growth of ZnO nanowires via nanoparticle-assisted pulsed-laser deposition and their optical properties [J].
Guo, Ruiqian ;
Nishimura, Jun ;
Matsumoto, Masato ;
Higashihata, Mitsuhiro ;
Nakamura, Daisuke ;
Okada, Tatsuo .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (01) :741-745