Boron is implanted in crystalline silicon through oxide layers with different thicknesses. The implantation is carried out at various doses and energies of interest in ultra large scale integration (ULSI) application. Rapid thermal annealings (RTA) are used to obtain shallow junctions and electrical activation of the B atoms. However, transient enhanced diffusion induced by implantation damage can be observed. The boron concentration profiles before and after annealing are obtained with secondary ion mass spectrometry (SIMS). It is found that the diffusion transient in the tail region of the boron profile increases with decreasing oxide thickness. Even more, if the implantation damage concerns mostly the oxide, i.e. when the concentration peak is located in this oxide, the oxygen knocked into the silicon substrate could play this way an important role in restricting the boron diffusion, which is good to obtain very shallow junctions. On the other hand, for thinner oxide, boron enhanced diffusion is attributed to the implantation induced damage into silicon at high doses. The diffusion process of boron in oxide and monocrystalline silicon during rapid thermal annealing is investigated. The boron diffusion profiles obtained by computer simulation are compared with the measured results. It is shown by this comparison that the intrinsic coefficient cannot be considered as constant along all the silicon depth.