Physical Consequences of the Equivalence of Conditions for the Steady-State Growth of Nanowires and the Nucleation on Triple Phase Line

被引:14
作者
Dubrovskii, V. G. [1 ,2 ]
机构
[1] Russian Acad Sci, St Petersburg Phys & Technol Ctr Res & Educ, St Petersburg 195220, Russia
[2] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia
基金
俄罗斯基础研究基金会;
关键词
BLENDE GAAS NANOWIRES; ZINC-BLENDE; SEMICONDUCTOR NANOWIRES; DIFFUSION MECHANISM; NANOWHISKERS;
D O I
10.1134/S1063785011010184
中图分类号
O59 [应用物理学];
学科分类号
摘要
A new theoretical model describing the steady-state growth and crystalline structure of semiconductor nanowires (NWs) is proposed and its physical consequences are considered. It is demonstrated that the Nebol'sin-Shchetinin condition (nonwetting of the NW side surface by the liquid drop) necessary for the steady-state growth of NWs according to the vapor-liquid-solid (VLS) mechanism is equivalent to the Glas condition of nucleation on the triple phase line for the monocentric NW growth. An energy criterion for the steady-state growth of NWs is formulated in the general case of faceted NW side surface. Effective surface energies are found that determine the activation barrier for nucleation at the NW top. Based on the proposed model, the issue of determining the III-V semiconductor NW crystal structure (cubic zinc blende type versus hexagonal wurtzite type) is considered. In particular, it is shown that a decrease in the surface energy of a catalyst must lead to the predominant formation of a cubic phase, which is confirmed by experimental data on the growth of GaAs nanowires according to the VLS mechanism with Au and Ga catalysts.
引用
收藏
页码:53 / 57
页数:5
相关论文
共 24 条
[1]   An empirical potential approach to wurtzite-zinc-blende polytypism in group III-V semiconductor nanowires [J].
Akiyama, T ;
Sano, K ;
Nakamura, K ;
Ito, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2006, 45 (8-11) :L275-L278
[2]   Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy [J].
Cirlin, G. E. ;
Dubrovskii, V. G. ;
Samsonenko, Yu. B. ;
Bouravleuv, A. D. ;
Durose, K. ;
Proskuryakov, Y. Y. ;
Mendes, Budhikar ;
Bowen, L. ;
Kaliteevski, M. A. ;
Abram, R. A. ;
Zeze, Dagou .
PHYSICAL REVIEW B, 2010, 82 (03)
[3]   The diffusion mechanism in the formation of GaAs and AlGaAs nanowhiskers during the process of molecular-beam epitaxy [J].
Cirlin, GE ;
Dubrovskii, VG ;
Sibirev, NV ;
Soshnikov, IP ;
Samsonenko, YB ;
Tonkikh, AA ;
Ustinov, VM .
SEMICONDUCTORS, 2005, 39 (05) :557-564
[4]   Growth thermodynamics of nanowires and its application to polytypism of zinc blende III-V nanowires [J].
Dubrovskii, V. G. ;
Sibirev, N. V. .
PHYSICAL REVIEW B, 2008, 77 (03)
[5]   Diffusion-controlled growth of semiconductor nanowires: Vapor pressure versus high vacuum deposition [J].
Dubrovskii, V. G. ;
Sibirev, N. V. ;
Suris, R. A. ;
Cirlin, G. E. ;
Harmand, J. C. ;
Ustinov, V. M. .
SURFACE SCIENCE, 2007, 601 (18) :4395-4401
[6]   Semiconductor nanowhiskers: Synthesis, properties, and applications [J].
Dubrovskii, V. G. ;
Cirlin, G. E. ;
Ustinov, V. M. .
SEMICONDUCTORS, 2009, 43 (12) :1539-1584
[7]   Role of nonlinear effects in nanowire growth and crystal phase [J].
Dubrovskii, V. G. ;
Sibirev, N. V. ;
Cirlin, G. E. ;
Bouravleuv, A. D. ;
Samsonenko, Yu. B. ;
Dheeraj, D. L. ;
Zhou, H. L. ;
Sartel, C. ;
Harmand, J. C. ;
Patriarche, G. ;
Glas, F. .
PHYSICAL REVIEW B, 2009, 80 (20)
[8]   Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires [J].
Dubrovskii, V. G. ;
Sibirev, N. V. ;
Cirlin, G. E. ;
Soshnikov, I. P. ;
Chen, W. H. ;
Larde, R. ;
Cadel, E. ;
Pareige, P. ;
Xu, T. ;
Grandidier, B. ;
Nys, J. -P. ;
Stievenard, D. ;
Moewe, M. ;
Chuang, L. C. ;
Chang-Hasnain, C. .
PHYSICAL REVIEW B, 2009, 79 (20)
[9]   Shape modification of III-V nanowires: The role of nucleation on sidewalls [J].
Dubrovskii, V. G. ;
Sibirev, N. V. ;
Cirlin, G. E. ;
Tchernycheva, M. ;
Harmand, J. C. ;
Ustinov, V. M. .
PHYSICAL REVIEW E, 2008, 77 (03)
[10]   Growth kinetics and crystal structure of semiconductor nanowires [J].
Dubrovskii, V. G. ;
Sibirev, N. V. ;
Harmand, J. C. ;
Glas, F. .
PHYSICAL REVIEW B, 2008, 78 (23)