High-Frequency Performance of Submicrometer Transistors That Use Aligned Arrays of Single-Walled Carbon Nanotubes

被引:114
作者
Kocabas, Coskun [2 ]
Dunham, Simon [3 ]
Cao, Qing [5 ]
Cimino, Kurt [4 ]
Ho, Xinning [3 ]
Kim, Hoon-Sik [3 ]
Dawson, Dale [1 ]
Payne, Joseph [1 ]
Stuenkel, Mark [4 ]
Zhang, Hong [1 ]
Banks, Tony [7 ]
Feng, Milton [4 ]
Rotkin, Slava V. [8 ,9 ]
Rogers, John A. [3 ,4 ,5 ,6 ,7 ]
机构
[1] Northrop Grumman Elect Syst, Linthicum, MD 21090 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[6] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[7] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[8] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA
[9] Lehigh Univ, Ctr Adv Mat & Nanotechnol, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
GUIDED GROWTH; LARGE-SCALE; TRANSPORT;
D O I
10.1021/nl9001074
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The unique electronic properties of single-walled carbon nanotubes (SWNTs) make them promising candidates for next generation electronics, particularly in systems that demand high frequency (e.g., radio frequency, RF) operation. Transistors that incorporate perfectly aligned, parallel arrays of SWNTs avoid the practical limitations of devices that use individual tubes, and they also enable comprehensive experimental and theoretical evaluation of the intrinsic properties. Thus, devices consisting of arrays represent a practical route to use of SWNTs for RF devices and circuits. The results presented here reveal many aspects of device operation in such array layouts, including full compatibility with conventional small signal models of RF response. Submicrometer channel length devices show unity current gain (f(t)) and unity power gain frequencies (f(max)) as high as similar to 5 and similar to 9 GHz, respectively, with measured scattering parameters (S-parameters) that agree quantitatively with calculation. The small signal models of the devices provide the essential intrinsic parameters: saturation velocities of 1.2 x 10(7) cm/s and intrinsic values of f(t) of similar to 30 GHz for a gate length of 700 nm, increasing with decreasing length. The results provide clear insights into the challenges and opportunities of SWNT arrays for applications in RF electronics.
引用
收藏
页码:1937 / 1943
页数:7
相关论文
共 30 条
[1]  
[Anonymous], 1998, Metals Handbook, V2nd
[2]   Frequency dependent characterization of transport properties in carbon nanotube transistors [J].
Appenzeller, J ;
Frank, DJ .
APPLIED PHYSICS LETTERS, 2004, 84 (10) :1771-1773
[3]   Inherent linearity in carbon nanotube field-effect transistors [J].
Baumgardner, James E. ;
Pesetski, Aaron A. ;
Murduck, James M. ;
Przybysz, John X. ;
Adam, John D. ;
Zhang, Hong .
APPLIED PHYSICS LETTERS, 2007, 91 (05)
[4]   An 8-GHz ft carbon nanotube field-effect transistor for gigahertz range applications [J].
Bethoux, J. -M. ;
Happy, H. ;
Dambrine, G. ;
Derycke, V. ;
Goffman, M. ;
Bourgoin, J. -P. .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (08) :681-683
[5]   Orientation-dependent C60 electronic structures revealed by photoemission spectroscopy (vol 93, pg 197601, 2004) -: art. no. 099903 [J].
Brouet, V ;
Yang, WL ;
Zhou, XJ ;
Choi, HJ ;
Louie, SG ;
Cohen, ML ;
Goldoni, A ;
Parmigiani, F ;
Hussain, Z ;
Shen, ZX .
PHYSICAL REVIEW LETTERS, 2005, 95 (09)
[6]   AC performance of nanoelectronics: towards a ballistic THz nanotube transistor [J].
Burke, PJ .
SOLID-STATE ELECTRONICS, 2004, 48 (10-11) :1981-1986
[7]   Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates [J].
Cao, Qing ;
Kim, Hoon-sik ;
Pimparkar, Ninad ;
Kulkarni, Jaydeep P. ;
Wang, Congjun ;
Shim, Moonsub ;
Roy, Kaushik ;
Alam, Muhammad A. ;
Rogers, John A. .
NATURE, 2008, 454 (7203) :495-U4
[8]   Single carbon nanotube transistor at GHz frequency [J].
Chaste, J. ;
Lechner, L. ;
Morfin, P. ;
Feve, G. ;
Kontos, T. ;
Berroir, J. -M. ;
Glattli, D. C. ;
Happy, H. ;
Hakonen, P. ;
Placais, B. .
NANO LETTERS, 2008, 8 (02) :525-528
[9]   Benchmarking nanotechnology for high-performance and low-power logic transistor applications [J].
Chau, R ;
Datta, S ;
Doczy, M ;
Doyle, B ;
Jin, J ;
Kavalieros, J ;
Majumdar, A ;
Metz, M ;
Radosavljevic, M .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2005, 4 (02) :153-158
[10]   Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes [J].
Chen, YF ;
Fuhrer, MS .
PHYSICAL REVIEW LETTERS, 2005, 95 (23)