Approximate renormalization-group transformation for Hamiltonian systems with three degrees of freedom

被引:11
作者
Chandre, C
Jauslin, HR
Benfatto, G
Celletti, A
机构
[1] Univ Bourgogne, CNRS, Phys Lab, F-21078 Dijon, France
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[3] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67100 Laquila, Italy
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 05期
关键词
D O I
10.1103/PhysRevE.60.5412
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We construct an approximate renormalization transformation that combines Kolmogorov-Arnol'd-Moser and renormalization-group techniques, to analyze instabilities in Hamiltonian systems with three degrees of freedom. This scheme is implemented both for isoenergetically nondegenerate and for degenerate Hamiltonians. For the spiral mean frequency vector, we find numerically that the iterations of the transformation on nondegenerate Hamiltonians tend to degenerate ones on the critical surface. As a consequence, isoenergetically degenerate and nondegenerate Hamiltonians belong to the same universality class, and thus the corresponding critical invariant tori have the same type of scaling properties. We numerically investigate the structure of the attracting set on the critical surface and find that it is a strange nonchaotic attractor. We compute exponents that characterize its universality class. [S1063-651X(99)04211-7].
引用
收藏
页码:5412 / 5421
页数:10
相关论文
共 41 条
[1]   A renormalization group for Hamiltonians: numerical results [J].
Abad, JJ ;
Koch, H ;
Wittwer, P .
NONLINEARITY, 1998, 11 (05) :1185-1194
[2]  
[Anonymous], RENORMALIZATION AREA
[3]   BREAKDOWN OF UNIVERSALITY IN RENORMALIZATION DYNAMICS FOR CRITICAL INVARIANT TORUS [J].
ARTUSO, R ;
CASATI, G ;
SHEPELYANSKY, DL .
EUROPHYSICS LETTERS, 1991, 15 (04) :381-386
[4]  
ARTUSO R, 1992, SOLITONS FRACTALS, V2, P181
[5]  
BOLLT EM, 1993, PHYSICA D, V66, P282, DOI 10.1016/0167-2789(93)90070-H
[6]   A version of Thirring's approach to the Kolmogorov-Arnold-Moser theorem for quadratic Hamiltonians with degenerate twist [J].
Chandre, C ;
Jauslin, HR .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (11) :5856-5865
[7]   Critical attractor and universality in a renormalization scheme for three frequency Hamiltonian systems [J].
Chandre, C ;
Jauslin, HR .
PHYSICAL REVIEW LETTERS, 1998, 81 (23) :5125-5128
[8]   Universality for the breakup of invariant tori in Hamiltonian flows [J].
Chandre, C ;
Govin, M ;
Jauslin, HR ;
Koch, H .
PHYSICAL REVIEW E, 1998, 57 (06) :6612-6617
[9]   Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems [J].
Chandre, C ;
Govin, M ;
Jauslin, HR .
PHYSICAL REVIEW E, 1998, 57 (02) :1536-1543
[10]  
CHANDRE C, CHAODYN9906002