Carrier diffusion in low-dimensional semiconductors: A comparison of quantum wells, disordered quantum wells, and quantum dots

被引:45
作者
Fiore, A [1 ]
Rossetti, M
Alloing, B
Paranthoen, C
Chen, JX
Geelhaar, L
Riechert, H
机构
[1] Ecole Polytech Fed Lausanne, Inst Photon & Quantum Elect, CH-1015 Lausanne, Switzerland
[2] Infineon Technol, Corp Res Photon, D-81730 Munich, Germany
[3] CNR, IFN, Inst Photon & Nanotechnol, I-00156 Rome, Italy
来源
PHYSICAL REVIEW B | 2004年 / 70卷 / 20期
关键词
D O I
10.1103/PhysRevB.70.205311
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a comparative study of carrier diffusion in semiconductor heterostructures with different dimensionality [InGaAs quantum wells (QWs), InAs quantum dots (QDs), and disordered InGaNAs QWs (DQWs)]. In order to evaluate the diffusion length in the active region of device structures, we introduce a method based on the measurement of the current-voltage and light-current characteristics in light-emitting diodes where current is injected in an area <1 mum(2). By analyzing the scaling behavior of devices with different sizes, we deduce the effective active area, and thus the diffusion length. A strong reduction in the diffusion length is observed going from QWs (L(d)approximate to2.7 mum) to QDs (L-d<100 nm), DQWs being an intermediate case (L(diff)approximate to0-200 nm depending on the carrier density). These results show that lateral composition fluctuations, either intended or unintended, produce strong carrier localization and significantly affect the carrier profile in a device even at room temperature.
引用
收藏
页码:205311 / 1
页数:12
相关论文
共 41 条
[1]   Effect of annealing on the In and N distribution in InGaAsN quantum wells [J].
Albrecht, M ;
Grillo, V ;
Remmele, T ;
Strunk, HP ;
Egorov, AY ;
Dumitras, G ;
Riechert, H ;
Kaschner, A ;
Heitz, R ;
Hoffmann, A .
APPLIED PHYSICS LETTERS, 2002, 81 (15) :2719-2721
[2]  
[Anonymous], 1985, SEMICONDUCTOR PHYS
[3]   Continuous room-temperature operation of electrically pumped quantum-dot microcylinder lasers [J].
Arzberger, M ;
Böhm, G ;
Amann, MC ;
Abstreiter, G .
APPLIED PHYSICS LETTERS, 2001, 79 (12) :1766-1768
[4]   Method of source terms for dipole emission modification in modes of arbitrary planar structures [J].
Benisty, H ;
Stanley, R ;
Mayer, M .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (05) :1192-1201
[5]   A comparative study of spontaneous emission and carrier recombination processes in InGaAs quantum dots and GaInNAs quantum wells emitting near 1300 nm [J].
Bennett, AJ ;
Stavrinou, PN ;
Roberts, C ;
Murray, R ;
Parry, G ;
Roberts, JS .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (10) :6215-6218
[6]   Mechanism for rapid thermal annealing improvements in undoped GaNxAs1-x/GaAs structures grown by molecular beam epitaxy [J].
Buyanova, IA ;
Pozina, G ;
Hai, PN ;
Thinh, NQ ;
Bergman, JP ;
Chen, WM ;
Xin, HP ;
Tu, CW .
APPLIED PHYSICS LETTERS, 2000, 77 (15) :2325-2327
[7]   Scaling quantum-dot light-emitting diodes to submicrometer sizes [J].
Fiore, A ;
Chen, JX ;
Ilegems, M .
APPLIED PHYSICS LETTERS, 2002, 81 (10) :1756-1758
[8]   Time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 μm [J].
Fiore, A ;
Borri, P ;
Langbein, W ;
Hvam, JM ;
Oesterle, U ;
Houdré, R ;
Stanley, RP ;
Ilegems, M .
APPLIED PHYSICS LETTERS, 2000, 76 (23) :3430-3432
[9]   High-efficiency light-emitting diodes at ≈1.3 μm using InAs-InGaAs quantum dots [J].
Fiore, A ;
Oesterle, U ;
Stanley, RP ;
Ilegems, M .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (12) :1601-1603
[10]   Electron conduction in two-dimensional GaAs1-yNy channels -: art. no. 153305 [J].
Fowler, D ;
Makarovsky, O ;
Patanè, A ;
Eaves, L ;
Geelhaar, L ;
Riechert, H .
PHYSICAL REVIEW B, 2004, 69 (15) :153305-1