Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte

被引:127
作者
Lin, Ming-Wei [1 ]
Liu, Lezhang [1 ]
Lan, Qing [1 ]
Tan, Xuebin [2 ]
Dhindsa, Kulwinder S. [1 ]
Zeng, Peng [2 ]
Naik, Vaman M. [3 ]
Cheng, Mark Ming-Cheng [2 ]
Zhou, Zhixian [1 ]
机构
[1] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 USA
[2] Wayne State Univ, Dept Elect & Comp Engn, Detroit, MI 48202 USA
[3] Univ Michigan, Dept Nat Sci, Dearborn, MI 48128 USA
基金
美国国家科学基金会;
关键词
GRAPHENE; SCATTERING; TRANSPORT;
D O I
10.1088/0022-3727/45/34/345102
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report electrical characterization of monolayer molybdenum disulfide (MoS2) devices using a thin layer of polymer electrolyte (PE) consisting of poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO4) as both a contact-barrier reducer and channel mobility booster. We find that bare MoS2 devices (without PE) fabricated on Si/SiO2 have low channel mobility and large contact resistance, both of which severely limit the field-effect mobility of the devices. A thin layer of PEO/LiClO4 deposited on top of the devices not only substantially reduces the contact resistance but also boost the channel mobility, leading up to three-orders-of-magnitude enhancement of the field-effect mobility of the device. When the PE is used as a gate medium, the MoS2 field-effect transistors exhibit excellent device characteristics such as a near ideal subthreshold swing and an on/off ratio of 10(6) as a result of the strong gate-channel coupling.
引用
收藏
页数:6
相关论文
共 29 条
[1]   High-Throughput Synthesis of Graphene by Intercalation - Exfoliation of Graphite Oxide and Study of Ionic Screening in Graphene Transistor [J].
Ang, Priscilla Kailian ;
Wang, Shuai ;
Bao, Qiaoliang ;
Thong, John T. L. ;
Loh, Kian Ping .
ACS NANO, 2009, 3 (11) :3587-3594
[2]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[3]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[4]   Dielectric Screening Enhanced Performance in Graphene FET [J].
Chen, Fang ;
Xia, Jilin ;
Ferry, David K. ;
Tao, Nongjian .
NANO LETTERS, 2009, 9 (07) :2571-2574
[5]   Ionic Screening of Charged-Impurity Scattering in Graphene [J].
Chen, Fang ;
Xia, Jilin ;
Tao, Nongjian .
NANO LETTERS, 2009, 9 (04) :1621-1625
[6]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[7]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[8]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[9]   MOBILITY OF CHARGE CARRIERS IN SEMICONDUCTING LAYER STRUCTURES [J].
FIVAZ, R ;
MOOSER, E .
PHYSICAL REVIEW, 1967, 163 (03) :743-&
[10]  
Ghatak S, 2011, ACS NANO, V5, P7707, DOI [10.1021/nn202852J, 10.1021/nn202852j]