Determination of the threshold of the break-up of invariant tori in a class of three frequency Hamiltonian systems

被引:9
作者
Chandre, C [1 ]
Laskar, J
Benfatto, G
Jauslin, HR
机构
[1] Georgia Inst Technol, Sch Phys, Ctr Nonlinear Sci, Atlanta, GA 30332 USA
[2] CNRS, IMC, UMR8028, F-74014 Paris, France
[3] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[4] Univ Bourgogne, CNRS, Phys Lab, F-21078 Dijon, France
关键词
invariant tori; renormalization; Hamiltonian systems;
D O I
10.1016/S0167-2789(01)00268-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of Hamiltonians with three degrees of freedom that can be mapped into quasi-periodically driven pendulums. The purpose of this paper is to determine the threshold of the break-up of invariant tori with a specific frequency vector. We apply two techniques: the frequency map analysis and renormalization-group methods. The renormalization transformation acting on a Hamiltonian is a canonical change of coordinates which is a combination of a partial elimination of the irrelevant modes of the Hamiltonian and a rescaling of phase space around the considered torus. We give numerical evidence that the critical coupling at which the renormalization transformation starts to diverge is the same as the value given by the frequency map analysis for the break-up of invariant tori. Furthermore, we obtain by these methods numerical values of the threshold of the break-up of the last invariant torus. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:159 / 170
页数:12
相关论文
共 21 条
[1]   Renormalization and periodic orbits for Hamiltonian flows [J].
Abad, JJ ;
Koch, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (02) :371-394
[2]   CONSTRUCTION OF ANALYTIC KAM SURFACES AND EFFECTIVE STABILITY BOUNDS [J].
CELLETTI, A ;
CHIERCHIA, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) :119-161
[3]   Improved estimates on the existence of invariant tori for Hamiltonian systems [J].
Celletti, A ;
Giorgilli, A ;
Locatelli, U .
NONLINEARITY, 2000, 13 (02) :397-412
[4]   A version of Thirring's approach to the Kolmogorov-Arnold-Moser theorem for quadratic Hamiltonians with degenerate twist [J].
Chandre, C ;
Jauslin, HR .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (11) :5856-5865
[5]   Approximate renormalization-group transformation for Hamiltonian systems with three degrees of freedom [J].
Chandre, C ;
Jauslin, HR ;
Benfatto, G ;
Celletti, A .
PHYSICAL REVIEW E, 1999, 60 (05) :5412-5421
[6]   Universality for the breakup of invariant tori in Hamiltonian flows [J].
Chandre, C ;
Govin, M ;
Jauslin, HR ;
Koch, H .
PHYSICAL REVIEW E, 1998, 57 (06) :6612-6617
[7]   Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems [J].
Chandre, C ;
Govin, M ;
Jauslin, HR .
PHYSICAL REVIEW E, 1998, 57 (02) :1536-1543
[8]   Strange attractor for the renormalization flow for invariant tori of Hamiltonian systems with two generic frequencies [J].
Chandre, C ;
Jauslin, HR .
PHYSICAL REVIEW E, 2000, 61 (02) :1320-1328
[9]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[10]   Kolmogorov-Arnold-Moser-renormalization-group analysis of stability in Hamiltonian flows [J].
Govin, M ;
Chandre, C ;
Jauslin, HR .
PHYSICAL REVIEW LETTERS, 1997, 79 (20) :3881-3884